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Abstract: In t.hese lectures, we devrlop thr t.hwry of the CUour Glass 
C~ondrlrsate. This is the mat.t er maclt! of gluon~ in the high dwsity erwirm- 
nlent charact,erist,ic of deep illelastic sattering or ha.dron-hadron collisions 
at. very high energy The lectures are self contained and cornprehensive. 
They start with a phenomenological illtroducticm, develop t,he t,heor!: of 
classical gluon fields nplaqxkte for the (.!olour Gli\ss, awl end with A 
derivatiou a1~1 discussicm of the reiiorrllrtlizat,iorl gruup cquat.ions which 
tleteriiiiiir this effective theory 

1 General Considerations 



l Condensate: There is A very high density of mnssless ghmns. Tlmr gluons 
can be packed until their phase spnce chsity is so l&h that int.eract,ious 
prevent more ghon occupation. With increasing energy, this fh~s the 
ghons to occupy higher momenta.. so that tlir ccmpling brcomce Wdi. 

The gluon density sst.urates at. a value of order l/c\ ,< > 1. corrrsponding 
to a multiparticle stat.e which is a Bose condensate. 

Iii these lectures. wr will try t.0 rxpldri why the al)ovn is very plausible. 
Before doing this, however, it is useful to review scm1cr’ of the typical fentures 
of liadronir intSeractions, ant1 some unanswerecl theoretical questions which are 
associate with these pl~enomem. Tllis will motivate rnuc~lr of the later discussion. 

1.2 Total Cross Sections at Asymptotic Energy 

Computing total cross sections as E -+ 173 is one of the greizt, unsolved problems 
of QclD. IJulike for processes wllich are computed in perturbation t4heory, it is 
not reqUirrd that, any energy transfer become hrge as the t.0ti3.1 collision energy 
E -+ cm. C!omputing a total cross srrtion for haclronic scattering therefore 
appears to br intrinsically non-perturbativr. In the tiC)‘s ad early 70’s, Regge 
theory was rxtensively developed in m attempt. to uudrrstaiid tlir total cross 
section. The resnlts of this analysis were t.o our mind inconclusive, ~ntl crrtaiuly 
can not be claimed to be a first principles understanding from QC!D. 
The total cross section for rqr i.tUd pp collisions is S~KWI~ in Fig. 1. Typically, it, 
is assmled that the t.ot,al cross section grows as In2 E as E + ix~. This is the 
so called Froissat l.~~uncl, which corresponds to the nlaximal growth nllomed 
ly the unitarity of the scattering matrix. Is this correct. ‘) Is the coeflicient of 
111~ E uni+ersal for all lmdronic precesses’ ! Why is the uuitjarity limit saturated? 
Carl we m~clerstand the t,otal cross section from first principles in QC’D? Is it 
unclerstanda.th in weakly couplad QCD. or is it. it11 intrinsic;rlly non-p’rturbat:ivr 
plienoinenorr? 

1.3 Particle Production in High Energy Collisions 

In order t.o discuss particle prodUction, it is useful to introduce some kinema.tical 
variables adsptzd fbr high euergy collisions: the light cone coorchntcs. Let 
- be t&e 
$, Id, 2. 

longitudinal axis of the &Iision. For an arl)itrary -C-vcct.or 11” = 
.[,3) (I,:( = II,, etc..), we clrfine its liglibc3 )ne (IX j (~c-)c.)rt:liiiatcs ils 

II1 partiWlar, we sha.11 refer t0 .r+ = (t + zj/&i as tlie LCI 3ime”. arrcl to 
.I: - = (t-2)/1/2 iis the LCY “longit~udinsl cuordinate”. The invariant dot product. 
reads: 

!,I. ;r = p-x+ + p+:r- - 1’1 . .r’I, (1.2) 
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mliich suggests that p- _ _ - the momentmu vi.u+&le Pol!juptr to t.lle “tinir” .1:+ 
- should be interpreted as the LC! energy, and p + as the (Lc’ j lungituclinal 
momentum. 111 particular, for particles on t,hcr imss-shell: y* = (E k-p:)/ ~52, 
with E = (72 + p2 j’/l’. and thefore: 

(1.3) 

These tlefiriit,ioirs are useful, mioiig other IWkX)IlS, hecause of tSllrir simple prop- 
ert,ies under longitudinal Lorcmtz boosts: p+ f /-Cl’ +, ]I-- + (l/ti)Jl-; Where h’ is 
a ~cJIX&alIt. UIlder bO0St.S. the rqlidky is @St SlliftfXl by a CXJIIStWlt: y - y -t- ti. 

C!onsicler now t.lie collision of two icleritical l~aclroiis in the center of mass frnrne. 
as shown in Fig, 2. 111 this figure, me have assumed that the cdliding ldrons 
have it transvctrse ext,ent which is large compared to die size of the produced 
particles. This is true fur nuclei, or if the typical transverse n~~m~enta, of the 
proclucecl particles is large conqmrecl to AQ~,L,, since the trc.)rresgoliclirllS size will 
IJ~ 1uuc11 snlaller than a. Fermi. We ha,ve dso ;~ssurId that the collitliqg particles 
have an energy which is lap rriouglI SC) that. they pass tlirougll otie another and 

produce 1iies01is in t.heir make. This is known to happen experimentdly: the 
particles which carry the quantum uumhers of the mllicling particles typicdly 
lose only some finite fract,ion of their rllornellta in the collision. Because of t.heir 
large energy, the incoming lmt:lro~is propagate ilearly at the ~WY! of li&, aid 
therefore are Lorentz contrrtcted in t,he longitmlinal ilirrct,icm. as sngptd by 

the figure. 
III Lc’ morcliiiatas, the right moving particle ( “thf: projectile” ) has a a-rllorn~nt,i.im 
pf = (~1;‘. p;, 01 ) with pf z j/Q)- ;uitl p; = AI’/2p: (since pr > AI, with 
AI = t,licl projectile mass). Similarly, for the left, iuoviiig h&on ( “the tir.r- 
(Tet”), we have p+ = pl i.LIlCl 1); = p:, 0 The iuvariaut energy scpard is 
s = (~1 $ ~‘2)~ = 2pl . ,r~x or 2pfp) z 11$, ;mtl c:oirlcitlrs, :\.t it. sl~onld, wit.h 
the total energy scjuarrt:l (El f Ez)’ in the center c~f iuass tixu~It‘. 

We define the longitudinal ulcment.um fraction, or Fey~mm’s x. of a prdlmd 
ploI1 as 

s - d- 

- 

P;t 

(with 0 < s 2 1). The riq)idity of the pion is then 

i1.S) 

(1.6) 

where >'p-o,j = ln( &~/AI) = ln( &/AI). The pion rapiclity is in the range 

-ypro,j 5 y s. .\'proj (Up tCJ it11 overall shift by A.y = lu(A//rU~)). 



 ̂ y 
,“O, )‘,,rq 

Figure 3: The rapidity tlistrilmtion of particks proclucecl in ;I. lmdronie collision. 

A typical clist~ribution of produwd particles (say, pjonsj in R haclronic ctollision 
is shown in Fig. 3. We denote by tl~V/dy t.lw nmnher of prodwed partkles per 
Uzlit KqJidity. ‘I’ll? h?~di~lg particles are shO~Vll hy the did hit! ad iire chstered 

around the projectile and target, rapidities. For rsunqde, in a heavy ion c-dlision, 
this is where the nucleon:: wcmlcl be. The tl~hecl line is t,lw distribution of 
procluctd niesons. Severa. theoretical issues arise in niultiparticle prodwtioii: 
Can we compute tllV/tly 7 Or rcen tliV/rJy nt y = 0 ( “wntral rapklity” ) ? 
How does the average tra.nsvrrse momentum I )f protlllcrd particles (7)~ ) lwhavr 
with energy? What is tlir ratio of proclucetl st,r;tiil?;e/nonstranF;e nkwms. iud 
corresponding ratios of charm, top, botkom etc at y = 0 ilS the writer of nlitSS 
energy approdies infinity? Dow multipart.iclr productkm as s - x3 Lit y = 0 
becoke simple, understandable itnd (~oiiiputa,ble:’ 
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Figure 4: Feynumn soa.ling of rapiclitv distributions. The two ditiereiit lines 
correspond to rapidity distrilmtions at. tlifferent eilrrgies. 

which x = nIl/(&,r) = III,/JG is ~inall, s 4: 1, ill t.lie high-energy limit 
of interest. Thus. presurnal:~ly, t,he multiparticle production at c:entral rapidity 
reflects properties of the small-s clegrees of fret&m in the c:c.)lliclin,q liuclroii 
w;ivefunctic.)ns. 
There is a remarkable feature of rapic1it.y distributions of prot~llcrd hdr~JllS. 

which we shall refer to as Feynnran scaling. If w:p plot rapidity distributions 
of produced liadroris at different eiiergirs, the11 iis function of y - Spr.,,>j, tht> 
rapidity distributions are to a. good approximation independent of energy This 
is illustrated in Fig. -l.. where t.1~ rapidity distrilmtion measured at. oue energy 
is shown with a. solid line a.nd the ra.pidity distribution at ii. differrut.. higher, 
energy is shown with a clott.ecl line. (In t.his plot, t.he rapidity distribution at, 
the lower energy 1ia.s been shifted by au amourrt so that. pn.rt.iclrs of positive 
rapidity hegin their tlistril:~ution at the same ;v~,~,,,~ iis tllr high energy pnrt.ic.les, 
;uid c~orrespoiiclingly for the negative rapidity part,icles. This of course’ lends to 
il. gap in the center for the low eiiergy particles clue to t.liis mapping. ) 
This means that as we go t,o higher and higher energies. the new physics is 
itsso&ted with the additional degrees of freedom at small rapic-litiea in the cent,er 
of mtss fmrnr (small-x dcgrtxx of frr~t:dom). The large s tlegrr:es (Jf freedom do 
not change mucl~ This suggests that there lliay he sioiu~ sort of r~ll~JrIll~lli~aCiolr~ti~Ji1 

group cle&ription iii ra.piclity where the clegrees of frrrtlcrm iIt lilrgrr s ill‘P held 
f&cl as we go to smaller values Of X. We Sllidl 8f:‘e tllilt in fact. tllesr large >; 
degrees of freedom act as souryes for the smnll x degrees of frt:edom, aud the 
rc~normalizstion group is generilted 1,~ intrgritting out degrees of freedom ;at 
relatively large s to jienera.te these sources. 

1.4 Deep Inelastic Scattering 

In Fig. 5, deep irrela,st.ic scattering is s11ow1~. Here an electron emits n virtun.1 
photon which scatters from it qu;ak in a hadron. The mcmentum and energy 
transfer of tlif? electron is measured, but tllc! results of thr hadron lxt& up arc: 



electron 

quash i ‘1 
j -. 

Figurr 5: Deep inelastic scdtering of iIll elect.ron 011 21 hi~t1r01~ 

not. In these lectllrrs. we cl0 not. have sufficient. t,ime to develop t.hr t.heory 
of deep inelastic scattering (see. e.g.. [l] for inorcf details). %or t.he present 
purposes, it is enough to say t,liat,, at. large inoinentuni t,ritnsfer CJ’ :.+ A$(-, 17. 
this esperiment can be 11sec1 to measure the clistrjbutions of clunrks in the hadron. 
To &scribe the (lunrk clistribut~ions, it is convenient to work in ~1. refrren~e fYnme 
where the haclron has ;t large light-tale longitudind IIlC)lIIC\llt.l.lIIl F’” :;~a A/ 
(“infinit~e momentum fixnip” ). In this frame, one can tlt5cribt: the h&on as 
ii collevtion of constitxents ( “partons” ), which are nrarly on-slid1 rxcit.ations 
carrying somt~ fraction s of thr total longit~utlinal monlelltum P’. Thus, t.lle 
lungitudind momentum of a parton is P+ = sP+, wit,11 0 5 s C 1. 
For the stru& quark in Fig. 5, t,llis x variable (“Fr.ynman’~ s”) is t~lunl tu t%lle 
Bjorken varid:de SB~ , which is defined in a frarnc: intlqjendent, way as s~.j = 
Q”/2P . q, and is directly ~nc~asurecl in t,lie experiment. In this definition, Q” = 
--(I” y,, , with ~1~’ t,he (~1. 7 iacr-like) -Lniornenbuni of t.he esclinn,gecl phot.on. The 
condition thitt~ x = x~] is what maximizes the qAia1 vver1;i.p hrt.mren the 
struck cluxk and the virtual pl~~ton, thus making t,hc interaction fnvourablr. 
The Bjorken variable scales like sB,j N Q’/s. with .Y = thr invariant enrrgy 
Pcluiired. Thus. in deep inel:Mic: scattering nt high energy (large: s itt, fried Q’) 
one measures quark distributions cLV~,~,~~,.~ /cl’s at small x (s < 1). 
It is useful to think &~~it, these distributions as a fiinrt,ion of rapidity. We cl&me 
the ra.pidit,y in deq~ inelnsbic scattering 3s 

!’ = Yhurlrorl - lIl(ljS), (1.7) 

(1.S) 

In Fig. 6. 31. typical dN/dy tlist,ribution for condit,urnt gluons of ~1. hdron is 
shown. This plot is similar t,o the rapic1it.y distribution of proclucetl particles in 
haclroIl-hadrun collisions (SW Fig. 3). Thr main cliffererlc~e is that, 111 W, me have 



Y 

Figure G: The rq)iditby tlistribution of gluo~w iusitlr (of a l~atlron. 

only half of the plot, corresponding to the right. nmving haclron in a collision in 
the center of ums frame. 
One may in fi,lCt, argue that. there is iutleed w relationship heWem the structure 
functions as measured in deep inelastic sca.ttering mid the rapidity distributions 
for particle production. We expect, for instance, the glum cljstrihution function 
to be proportional to thr? pion rapidity distribution. This is m1la.t WI~UZ out in 
rixmy models of particle production. It is further plniisible. since t.lw &grew of 
freedom of the glmns should not t-)c lost. hut5 rather m~wrted into the clrgrrrs 
of freedom of the produced hadrons. 
The sn-mll x problem is tlmt in experiments at HERA. the rnpjclity clistributions 
for quarks and g1uc~ns grow rapidly as tlw rapidity difference 

between the quark ~IKI the lmlron iwreasrs 121. This growth appears to be 
more rapid than 7 or T’, i>llCl mrious t.heorcticnl models hased on the original 
consiclera.tions by Lipatov and collragues [3] suggest it inay grow as an c’xpo- 
rleutial in 7 [3, 41. The more establisl~ed DGLAP evolution eqrmtion [S] pretlicts 
it less rapicle growth, like an espcmwtial iii J;, but this is still escwding the 
Fro&art unita.ritp bowid, which requires rapidity dist.ributio1i.s til grow at. most 
;ZS T 2 (since T - hi s). 
In Fig. 7, the ZEUS data for the glum clistributim are plot.trcl for Q3” = 
5 GeV”. 20 GeV’ ard 200 C&V” [a]. The g1uo11 distribut.ion is the number of 
gluons per unit rapidity in the lia~clron mvrfiinction, sG(s, 8”) = di~S71r,o,z,s /cl!- . 
Experinlentally, it is extracted from t,he dat:L for the quark structilre functions, 
by exploiting the dependence of the latter upon the resolut,ion of the probe, t&t 
is, upmr the tmisferrecl nlonientmn &‘. Note tlrc rise of xG(s, Q”) at s11ral1 s: 
this is the small x prot&m. If one had pldtecl the total mu1tiplicit.v of produced 
particles in ~1) ad pp collisions on the sane Idot, one woulcl have found rough 
ngreerrierit in the shape of the curves. 
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Figure 7: Thr Zeus r1nt.n for t.lle glum st,ruct.ure functions. 



Why is the small x rise in the glum distribution a prolhn’! Chnsicler Fig. 8. 
where we view t,hr hadron 1~~1 on. The constiturnts are the V&MY clu;irks, 
gluoix and sea quarks sliomn as cc-h*rrd circles. AS UJIc\ add iuore illld mJre 

constituer~ts, the lmlron tmromes more and iilc)rcI cruwtlrd. If we were to t.ry 
to measure these cotistituent~s with my illi rlernentnry photon prohr, i.1.S we do 
iI de?p irlehstir scai?k~lg, we inight expXt~ thiit the hh )I1 ~Oi.~~d h?cYJ~lle 

so cx~wclecl tllilt we could not ignore tlic shadowing r&cts of c0nstit.ut:nts [IS 
wr make the measurement. (Sliaclowing nlems tGt 5151116~ of the parttxis are 
obscurei: by virtue of lli.~~\Glg another parton in front of t.liern. This would result 
in a ClWreiX3t! of the scatterilqq cross sertioii relative to what is espect~ecl froiil 
incoherent inclepeiident scattering.) 
We shall later itrgll~ that the distribution functions at fisecl I)” .sahrmtc. which 
means that thy cease growing so rapidly at lligll energy [G. 7, 8, !I, 101. (See dSO 

Refs. [ll, 12, 13, l-I] for recent, reviews ancl more r&mares.) This saturation 
will be seen to occur at tril.1isvmst-l nii.mientit~ t:)rlow scmp intrinsic scale, tlie 
“s;~t.urat.ion S(~irll?” , which is estinmtc~cl as: 

(1.10) 

where tlN/tly is the gluon tlistribution. Only gluons mitter siiicr, at s~nnll s, 
the glucm density grows faster then the (llli.l.rk drnsity, i.lIld is the driving force 
towards saturation. This is why iI1 the fcnthcoruing cullsiderations we slrnll 
ignore the (sea) quxks, but fc~us cm the gluu~ls ahc~. Furthermore, nl?” - 
with R the lmdron radius - is the area of the hdron in the t.rmsverse plane. 
(This is well defined as long ;LS the wavrlengths of the t-sternal probes xc s~nall 
compared to R.) Finally, n,siV~~ is the colour chrge squared of a single gluon. 
Thus, t.lre “saturation sc;rle” (1.10) 1~s the meanin,g of he average CTJhllr charge 
squared of the gluous ill the ht.lrul~ ~~a.~rt!flul~tion pelt unit trmsversr i4reFi. 
Since he gluun distributivn inixwisrs rirpiillv with the energy. AS diomr~ by the 
HERA data, so clots the saturation sc&. ‘ivr slnall IISC’ the rapidity difference 
T = ln(l/x) - ln s, q. ( 1.9)) t,o characterize t.liis increase, ;md wriW 0: = I)$ (7). 
For suficiently large T (ix., lligll e~xm,gll energy, or small enough s), 

l the quark ancl hc:a~:p quark distribution functions: 

0 the intrinsic 1~1 distributions of quarks il.Ild gliions. 

But8 weak coupling cloes not necessarily moan that the physics is perturhtive. 
There are rrlarq rmrnplrs of nonperturbative plm~omena it weak coupling. An 
example is instantons in rlect-rowt:ak theory. whicll leacl to the ~irllii tic-m of lmrycm 
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nunibcr. A4JiotlJer exnmple is t.lir HtoiJJic pliysirs c.)f highly clJilrl?;ed nuclei. wlierr 
the electron propngatx3 in the 1~;Jckground of il stroi1g JJuc~l&r C~ollloml~ fiield. 
Also. a.t very high t.ernperr~ture, QC’D hecomes il. wt~alrly cmqAed quxk-gllmr 
plasma, but, it. eslJibit,s JloiJpert,urbnt,iT~e plienonien~~. 011 large distmces I’ > 1 /T 
(with T the temperat.ure), due to t.he collect.ivr l:)elJavic-mr of many clu~tuta [ 151. 
Returning to our small-s gluons. we notice t,hnt, :rt low transverse ~~rcmieuta 
Q” 5 Q:(T), they make r~ high density system. in which t.hc interaction proba- 
bility 

(1.12) 

is of order cme [(;. 7, 161. Thnt is, ;tltl~ouglJ the ctsul~ling is st~mll, c*.*( Q”) K 1, 
the effects vf the inter;tct.ioiis fire miplified E-y the lqq F;luor~ density (we shnll 
see that rt:V/cly - l/cl ‘i at siitllri~ti0lJ), nnd ordimry perturbation t,hrory hreoks 
down. 

‘r% cope with this, ;I resumnation of the high clmsity effects is necessary. Our 
strategy t.0 do so - to lw described nt length in thrsr lectures - will be tci 

construct au f$%ct%ve themy in which the sinsll-x gluoiis are dcscril~ecl irs the 
c1msic;l.l colour fields r;ldinted Ly “colour sources I’ i~t. higher mpidity. Physic:ally, 
these sources itre the “fast” p;~rtons, i.e., the liadron ccc.mstitueiJt,s with lmgrr 
longitudin~~l moJnrJlt,n p+ ::> x1’+. The properties of tllr colul~r sources will be 
obtnined via CL renori~J;Llizatiorl group aJidysis, in which t,he *’ %st lmtons :l.re 

The advnnt.a,ge of this strntcgy is that the non-linesr dkcts ;lrt:’ de& wit.ll ill 81 
classical contest, which iiinkes rmct ci-rlml;~.tions possilile. Specitically, (,a j t.lie 
classical field problem will he solved exactly, iml (h) n.t Dali step in the renor- 
Jnaliz;3.tion group analysis, the non-liiiem effects ;WXJCii~trd with the clitssi~8~1 
fields will lee treated emctly. On t.he other haJJt.l, the JJJUtUCJl interactions of tllr 
foist part,ons will be treat,etI iii perturlx~tion theory, in $1. “le;-t,din~-;-b~~.ri~~iiIlic” 
iqqxoxiniation which resums the JJJost irnporhaJJt qu;uiturn corrections A high 
energy (namely, those which are enhanced by t,he loge logarithm ln( l/s)). 
As we shall see? t,lJe result+Jg efft:ctive t.heory describes the S;LtllI7~t~fd gluuns ;18 
it Coloar Glass (~~t7lrrtlera,s,rtel. The Cli1sSiCA field ;~pprosiJnation is :rpproprintc: for 
these saturated gluons, lx~~use of the large ocmpation iiumlx~r ..VjC w l/cl., :$ 1 
of their t:ruc quantum strrte. In this limit. the Heisenl-)erg ccrnunutators MxvrrJJ 
particle meation ;tnd armihilation trporators I:I~WXIW rregligiblr: 

[II,. C/6] = 1 -<KC. &A. = fVA ) (1.13) 

whicll correspcmds indeed to x trlassiA regiinr. The c.lassicnl fielcl lnn,yuage 
is also well ada.pted t.0 descrihr the coh~7~~rr~ vf t,hes;r small-s glUc>mi. which 
m~erlnp with er2clJ other brca.wt~ c.Jf their large loiigWiclin;~.l wn.v~~len,@lJs. 
The pl~e~~mJeno~J of saturation provides alsc.) n natura.1 solution to thr unitarity 
problem alluded to befbre. WV shn.11 see t.lmt. wit.11 inrrr;l.sing euqy, t,lle ww 
1mrtons me produced IJrrl:)oJlderrJltl~ a.t. rnoment;~ p 1 L Qh. Tllus. tlww M-W 
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pnrtons have a typical trarlsrrrse size - l/1)1 5 l/l&. S111a.lle.r is s (i.e.. kqer 

is T), larger is QS( Tj, and tllerehre smallrr are the nrwly prot:luc~ecl p;dx~i~s. 
An external probe of transverse resolution hi - l/Q will not see prtrtons 
smaller than this resolution size. For 7 large rnough. Q’ <.I Q:(T). so that the 
~m%OIlS [XOdLlCd Whell fllrther illCre~lSi1lg th? WeI’gy Will llc-Jt C~JIltrihlte t.0 the 

cross section at. fixed Q’. Thus, although the glum clist~rih~ticm kerps iwrw~siqg 
with T, t.lierr is nevertheless 1~0 coiit.r;tclictiou with Imitarity. 

1.5 Geometrical Scaling 

Another striking fenture of the experimental thta at. HERA is ~~wrrrdr~lrtrl sd- 
brq itt, Bjorken x (< 0.01 [l’i]. In general. one expects t.lle structure fiiiictions 
extracted from deep inehstic smttering to depend upml t.wo tliIIIeIlsiorlkm kilt+ 
iriatical variables, s md &“/A”. wliwr A” is wine arl:Jitrary nlonientxni scnle 
of reference, which is fixed. The striking feature nllutlrcl to before is tlw obser- 
wtiorl t1la.t the x clependencr nmmrecl at HERA at Y K 0.01 ;uicl for a. hrod 

region of Q” (between O.OL5 and 450 Gev”) ml1 1.w entirely ~~(‘C~UIlttd for hy iI 

carresponding clependrnre c~f the reference scale 11” + l/R’(s) done. That is. 
rather tlmri being functions of two indepciidcrit variables s imd Q”/A”. t,lir mw- 
siwd structure functions at s K 0.01 tlepericl rfktivc~ly only nprm the sralirig 
v;triail-,le 

‘T E Q”i?“(s) (1.1.J) 

where K’(x) - xx ;u~l X ,.- 0.3 -- 0.4 in order t,o tit tllr. data. This is illustrat~ed in 
Fig. !1 [17]. SIK+ a scaling hhaviour is consistent with the saturation scenario 
[1X. 10, 191, as we slmll discuss towards the rntl of the lectures. Notr lwwever 
that the f5qmin~entally observed scaling extends t,o r~~latively large dues of 
s aucl Q’, above all t,lle rsthates for t,lrta snt,uration sdf~. Thus, this feature 
sjeems to he more jieneral tllari t,lle ~~llenc:JllleIlol1 of satl.lratic:~ll. 

1.6 Universality 

There we two separate fixmulations of wliwrsdit~y which WP important in 1111- 
clerstanclirig mid1 x pliysiw. 
a) The first. is :I wenk universa1it.y [k. 101. This is the statement hat. at sutfi- 
cieiitly high energy, physics slioiild depend ~1p011 the spediic properties of the 
ldron at hand (like its size or domic number PI) only via t.lle swtur;t.tiau scale 
Qs ( I-. A). Thus, at high enqq, t.llere sl~hl be sonl~ rc~llivderm~~ 1:wtween llu- 
clri and protons: Wlwn their Qz vdurs arc: t.lre same, thrir properties must 
he the same. An enq)irical E)iLnlnleterizatit,n of the g11~111 strwtlw function ill 
eq. (1.10) is 

(1.15) 
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l RHIC with nuclei N HERA wit.11 protons; 

l LHCl with nuclei h( HERA with nuclei. 

Estimates of the saturation scale for nuclei at RHIC rnergirs giw N 1 - 2 C&v, 
id at LHC Q,5 N 2 - 3 Gev. 
1)) The se~oncl is a strong univcrsalky which is meant ill ~1 stn.tistical ulechauical 
smse. This is the staternrllt t.hitt the etiectivr action which describes sndl x 
distribution function is critical arid xt a f&t1 point of some rellormalizat,ion 
group. This ~n~ms that the behavior cd corrrlat,ion functions is given by uni- 
wrsal critical expoiients, which clepcnd only on general proprrties of tJic: theory 
such as its synnietries i.incl cliinensionality. 

1.7 Some applications 

We ccmcluc1e these int,roductory considrratjons wit.13 R (lion-c!xlia.ilstivc) enluner- 
ation of recent applications of the concept, of siltura.tion and t,he (.Uour Glnss 
Condensate (CYX) to plienorneiiolc )gy. 
C!onsicler deep inelastic scattering first. It has been shown in Refs. [1X] tliat. 
the HERA data for (both inclusive and cliffrw~t~ive) structure functicw wn be 
well accounted for ly ;I plienornenological model which incorpwbtes saturation. 
The sane nu.drl has nlotivatetl the skwh for geonwtricnl scaling in the data. 
as explained in Sect. 1.5. 
Coming to ultrardativistic henvy km collisions. ilS t~sperinrentnlly realized at 
HHIC and, in perspective, a.t LHC. we ncrtr that. the CCX shoult:l be the ap- 
propriate description of the initial ctsnditioiis. Indeed, 1111 )st of the niultiparticle 
product,ion at. central ra.pidit.ies is froni the sniall-s (x 5 1 O-“) partons in t.lle 
uwlesr wavefwctioas, which are in u high-tlmsit-y, semi-c~lassic~al, rrgime. The 
rarly stages of a imclear collision, up to t,inlrs -s 1 /CJS, citn this I-w tkwril~rd as 
the rrrrlting of the Colour Glass ~~~~JIld~llS~~t~eS in the two nuclei. In R.efs. [2O], this 
nlekillg has bWI1 S~wteIIx-ltidy StAdkC~, aild the IIldt&VLrticle ~mJdwthI1 cml- 

pT,lted. & IlIIInci’kd silil&t~kJiis Clf the Chssid dfWf iv? thPO1.y 18. 211. After 
they form, the particles swtter wirli each other. nnd thir sdw:~uerit eudutic~ii 
can be described by transport t~lieory [22]. 
The first. expcrhental data at HHIC [X3] llnvr brm a.udyzr~l from the perspw- 
tive of the C!CX in Hrfs. [2-l, 25, XI. Sptdi4lg, the multipnC5cle ~mJC~~Ic~h 

has been studied wit,11 respect, to its dependence upon centrality ( Xuniber of 
Pa.rticipants” ) [U], rapidity [%5] and trnirsversr nlcmi6wtuIn tlisCril.mtkm [Xl. 
The clmrnl protluetiun front t,hr C’GC in peripheral lwl.yv-ion collisions has l-we11 
investjga.ted in [27]. 



l 

2 The classical effective theory 

With this section, we stwt. the study of m effecttiw theory for the siriall x 
coruponerlt of t,lrcx hadron mi~Vef1.lll(:ti0Il [8. 10, 32. 33, 3-l. 3.5. 36, 371 (see dso 
the previous review psprrs [12, SK]). lUotivatct1 by t-lie physical arguments 
exposed before, in particular. by the sepnrat~ion of sralrs between ~~f.st partons 
and .soft (i.e.. Snd-X) fihlOIW, ill the illfhlit~~ lllOIIlelltl.llll fi.~uIl~, this effwthY 

theory admits ;t rigourcJus derivation from QCD; t,o t-jr tlrsrribed in Sect. 3. 
Here, me s11dl rather rely on silnylt! kinematical collsiclrrat,ions to nmt,ivnt,e it.s 
general structure. 

2.1 A stochastic Yang-Mills theory 

In brief, the effective theory i:: A c.lassic;rl Yang-Alills t.htwy with ii mndoni 
colour source which bus onl,y a “plus” coinpouent ’ : 

(D,,F”“‘)‘l(.r) = fY* /),)(.I.) . (2.1) 

The classical gauge fields -4: represent the so,fi g1~1o11s in the lmhwn mvefunc- 
t,ion, i.e.. the glucm with small longitudinal inornerlta (I;+ = sP+ with x <Z. 1). 
For these pl~lons, the classica. rbpproxim~tbn shc~~~lcl 1.~ ;l~Jprc.)pl’iilte sirm t.hq 
are in a niultiparticle stat.e with large occupat,ion ium~brrs. 
The ja,st partons. with mcments I’+ :B A + , are not. clymn~ical fields ariylonger. 
IJUt they have been rat,lit:r RplitCd by t&e c*olollr cur-rent ,I/,’ = Ob’+[JC1 which iLCt3 
as n source fbr the soft glum fields. This is quite intlCt,ive: the sc.Jft ~luons in 
the liadron wavefbilction i.llT ~iKli~t+Yl by typically fast. Imi-ens. via tlle pirrton 
c.aacatles showr in Fig. 10. It is in f&t well k~iown that. for the t,rrr-level 
radiative process slwwu in Fig. 10 .a. classical il.Ild c.jua.lltlml calculatioiis give 
itleritica.1 results in the limit, where t.he emitted gluoil is soft 111. Wliai is less 
CJbViOW. but will be dfTll~JIlStratet:~ ljy the uiialysi:: in Sect. 3, is that quantum 
corrections like those displayed in Fig. 10.1-1 do not. invalidate this cln~sical 
description, but simply renormalize the propertics c~f the classical SCJUIW, in 
particular, it,s correli~tioiis. 
The gross properties of this source‘ follow from kinematics. The f&t I)artons 
IUOV~ alo~rg t,he z axis at. nearly the speed uf light. Tllry wn emit. or al.wrb, 
soft gluons, but iu a first ;tr)IJrtJximation they preserve strnight~line trn,ject.orirs 
along the light-coue (2 = f j. In terms of LC ooordinates, t,liry propagate in 
the positive .K+ clirection, while sit.ting at. .I’- = 0. Their CdCJLlr current is 
proportional to their velocity, which irnplirs -1: = P+/J,, , wit.11 a cbrge density 
plL(.~:j which is localized near .r- = 0. hIOrP ~U’~Y’is~ly, iis c~1.1n11t1.1111 fields. the 
fast partoiis 8re truly tlrloc;tlized CJWr a longit.udinal distance il.r- N l/l)+. iis 
required by the uncrrtn.intp principle. But since l/f’ + CC l/i;+, they st,ill look as 
sharply localized when %eF:n” by the soft gluCJllS, wlii& have IOIlg WitV?.l63l,l$klS 

and therefore ii poor longit.iidinal resolut.ioii. 
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A.,:+- = 
1 1 1 

-~ - .:/I - . 

Ep-J,! -I- EL -El’ - E}: 
(2.2) 

EI’ 

‘ITlris is mm11 ils coinpared tcJ t.lic: typimi.1 time sci11r i/E,, for t.lw tlyiiiuiiics of the 
fast pxtons. [In eq. (2.2). zl’ z 1$/2p+ is the LLC rnergp of the on-shell glum 
with monieiituin ~7 = (I)+, plj, and we have used the fact that. for k+ 4z II+ 
and comparable tmnswrse rrioinenta kl arid pl, CA. :9 ic7p, z,,-~ .] Tim. the 
“fast” degrees of freedom a.re effectively frozen over the short lifet,inx of t,lle soft 
glmJn, and cm be described by a. time-in k/w71 dent (ix., hdcyfm%?I~~~ CJf :I’+) 
colour source /lo (xv, .rl). 

As mggested by its Imation, the meiglit fuiictiun clrpcm:ls u~:mIi tlie soft, xa.1~ 
kf at which we measure correlations. Indeed, as we shall see in Sect. 3. I1-k.~ [[J] 
is obtained hy int~egrnting out dcgrew of freedom with longitudinal Inomenta 
lnrgttr than k+. It. tnrns out that it is Inore coiirwiient~ tc.) LISP t.lIe sapitii~~;’ 



to indicate t.his dependence, and thus write Il;[~~J = I7*/L+ [/,I. 
To den1 wit,h field variables and function& of them, it is cx)nvenient to consider 
if diseretizecl (or lattice) version of t&e 3-diinen~ioilnl c.*oll~igurutiiJl~ space, wit.11 
In.ttice points (.I:- , .1:1 ). (\fTe IIS~ t.lir sonic- not;ition:: fk- tlistrtG\ and continu- 
ous coordinates, to avoid a proliferat53n of syinL&.) A cx)nfiguratioii of the 
colour source is specified h,v fiiving it.s vahies fP (.r- , .I’_L) at. the ti lattice pojnts. 
The furrctionnl TTVT[p] is a (real) function of tllesr N ~1~s. TU 11;~ct a mran- 
ingful probabilistic iilt,erpret;ttioii. this fiinctiorl must lye positive semi-deiinite 
(17; [p] 2 0 for any /I) , ;mtl normalizrtl tc) unity: 

with the following functionul measure.: 

Gluon correlat~ion functions at. the soft SC& I;+ = xP+ = P+eVr are c~~k~inrd 
by first solving the cktsskal equations of motion (2.1 ) il.IJd then a\-eraging the 
solut,ion over 11 with the weight fLinction Tl; [/I] (Ixlow .Z E (.I’- , x1.) ) : 

where Ah z A:, [p] is the solilt,ion to the classkal Yang-;-hIills equations with 
static source pa, and is it.self independent. of time (c:f. Sect,. 2.3 below). Note 
that only equal-t.ime correlators ci.u~ be computed in this w;.i.y: but tbrse are 
precisely the correlators that are measured by il srrlwll-s external prot)r. wl~icli 
is ahsorbed ;tlmost irrstaiitnneousl!: by the lli~drc.~~l (cf. f-q. (2.2)). 

The formula (2.6) is readily extcndcd to a.ny operator wlJicl1 can 1~ rrla.t.ed to 0. 
To gua.ra.ntee that only the physica.1. gauze-invariarlt , qerat.r)rs squire a non- 
vanishing expectation value, we sll;i.ll require I\-, [/I) t.cJ be ~~tl.lgr-invariant. In 
pra.ctical cnlciilations, one generally has to fis n gii.Uge, so the gauge syninietq 
of WyT[p] map not, be always manifest. 
To summarize, the effective theory is defined b,v tq. (2.1) and (2.6) t.oget.her 
with t,he (so far, unspecified) weight function TT; [[I]. I n what follows, we shall 
devote much effort t,o derive t.his theory from QCD, and conskuct the weight 
fbnction It7T[/3] in the process (in Sects. 3-5). Rut befbre doing t.hat, let 11s gain 
more experience with the classical theory I )y solving the equations of motion 
(2.1) (in Sect. 2.3), and then using the result t.0 compute the gluon distribution 
of a large nucleus (in Sect. 2.4). In performing these cakulntions. we slinll need 
a more precise definition of the gluon distribution fimction and, more generally, 
of the relevant pliysicnl observables. so me start8 ty tlisc~iissing tliat. 

2.2 Some useful observables 

In subsequent itpplicntions of the effrctke tht%orJ; we shall mainly foci~s on 
two ohsrrvables whicli, because of t.lieir ~JhySkd c’ollt.& il.Ild of the sprcific 



structure of the effective theory, are particularl-y suggestive for studitls of uon- 
linear phenomena like saturation. These c-)l-Jserv;Lblrs. tllitt we introduce MJW, 

are the gluon distribution function nncl the cross-setrtioil for the scnttering of a 
“colour dipole” off the lmtlron. 

(2s) 

is the Fock space gluon density, i.e., the rmmber of ~IUOIIS pJrr unitL of vc.~lume in 

momentum space. The difficult-y is, however. t.ht this number depends uporr 

tlic gangc, so iii general it is riot n pliysical c.Jbscrv;~tdes. Still. its rnc~ dia.11 shortly 

a~rglle:, tllk cpxitity can be given :I g:i qe-iilv~lri~l.llt l-nei1lliIlg die11 ccJlllpllted in 

the light-cow (LC?) @I.l@! 

(2.12) 

This equation says that. we can express the longiturlinnl field in trrms of the 

transverse degrees of freedom which are specitiecl l>;r- the trn.nsverse,fields eritirely 



, I 

i.ind rxplicitly, These degrees of freedom cc.)rrrspontl to the two p&rization 
states of the gluons. The cpuultizat.ion of these tlr~rrt-8s of frcrzt ICIII~ prvccv& 1:)~ 
writ&% 139j: 

(7. L = :I:- X:+ -xl . kl) with the crra.tion and amihilation oprri.rtors satisfying 
the following coriiiiiiita.t.ion rela.tion a.t equal Lc’ time .?:+ : 

[u;(.r+, x7), q!+(.r+, (711 = di.~(r[)(. 2kq2ir)“ii’“‘(X - (1). (2.14) 

In t,erms of these Fock space operators. the glnon den&y is c*ranputetl as: 

dlV 
rl”l; = (n:J (.I:+, C) f$(.r+, x?)j = f$$ (il:.(.r+, &I;.( .I:+, -C,) , (2.15) 

where the avrrnge is over the hadron wavef~~llct.ion. By lic.~niogrnrit,v in time, this 
equal-time average is independent of the roordinci.te .i.+. which will be tlierrfore 
omitted in what follows. By inserting this into ccl. (,2.7 j ~mcl using the f&t thi1.t. 
in the LC!-gauge, F,i+(/;) = Ik*dL (k), me ol,t.nins (with lit = SE’+): 

1 
sG(s, cj”) = ;. 

* d”k~ 

I 
- ti(CJ” - n,~)(F,:i(6)1;:;+(-16)). (27i)2 (2xj 

As anticipated, this claw not loOk gauge illvitrhllt~. In cc.)orc.linate RI)i.LCP: 

F,:+(j&T;+(-z) = c(“,r. 
.i’ .i 

‘,f’!/r’t%+~ F,;‘(,jQT;+(,$ (2.17) 

involves the electric fields” at different sIJati;tl points .i: and !7. A iuanifestl,v 
gauge invariant opera.tor can be construct.ed ty ilplJroDri;.ltel~ insrrtin!z; Wilson 
lines. Specifically, in some iIrt.)itrary gauge. wP d+iinr 

(2.13) 

ad -r is an arbitrary oriented path from .y’ t.o .7. The (omitted) temporal coor- 
clina.tes .I.+ are the same for all fields. For any path 7. t.1~ operator in eq. (2.18) 
is gouge-inr~ari;nlt, since: the chain of operators t.here rnakrs a.1 vlosrrt lrq~. 
We now show that, by ;~Iqxopriat.ely chasing the p:ith, t.he gauge, itnd tllr Luund- 
ary conditions, the gauge-invariant operator (2.18) can be made to coincide with 



the simple 2-point function (2.17 j. Specifically, consider the path s1Iom1I in Fig. 
11, v&h the the fcdluwing three ele~nrr~ts: two “horizontal” piecw going iilOIlg 
the :I’- axis from (!I- , y/l) to (-IX, yl), iuid, reapec:tively. from (-ca 2:~ ) t.o 
(I;- , -I.I), am1 a “vert~id” piece from (-,x, !/I. ) t0 (--,x1, .(‘I j. Xlong the Iiori- 
zontal pieces, 11:. A = tk - =l +. so tdlese pirces do not, matter in the Lc’ gauge. 
Along the vertical piece, tlS. .J = tlzi . Al( -1~ , :I), ililt t.11v pat11 7 hrtmerll g_L 

;wtl :cl is still arbitrary. But t,he contribution of any such ~1 pat.11 to the Wilson 
line vanishes once we impose the following, “rrtarclrd” , l~~mndary coriclition: 

A:1 (.I’) - (1 a:: .1:- - -,x. (2.20) 

where T = ln( l/d:) = ln(P+/f+) ilIlC1 bl is die impact. paraineter ii1 the tmnu- 
verse plane (i.e., the ctent~ral coordinat.e bl = (.r:_~ + gl)/2 in rcl. (2X)j. This 
plmse-space rlistribi~tirm is it iuemingful quantity Giiw die typical tSransverse 



momenta. we consider are relatively large. 

(2.22) 

so that the Drawverse de Brolz;lie v~avrlength 5 - l//;_L of the partons un&r 
c~onsicler~~tion are uJuch shvrter than the typid SCi.llC’ of transverse wrint,ion 
in the Iiadrm, l/l&r,. (In purti~d~r, this rxplnins xd~,v vm cmi con& ler the 
hadron t,o lraw a well &fined tranwerse size R.) 
In fart, for simplicity, w slnall mvstly consider a hailron which is lic~mC~genrous 
in the transverse plane. v&h a &~.rp bounda.ry ut rndial Clismxe R. Them, the 
density (2.21) is independent of bl (within the disk O_L c:: Rj, ai~l reds (cf. 
eq. (2.16)) : 

(2.23) 

2.2.2 The dipole-hadron cross-section 

C’onsicler high energy clerp inelnstic xattering (DE) in a qmial frxue - the 
“dipole frame” - in which the virtual photon -TV* is moving wry fast. say, ii1 the 
negative f dirert,ioii. but most. of the total energy is still carried by the hadron, 
which moves nearly nt the speed of light in tllr positivr : rlire~tion. Tlms. the 
rapidity gap hetweeii the ha&on and the virtual pll0t.m is 

The dipole frame is sprcial in two respects [l-l] (and refercnccs therein): 
i) The DIS looks like A twc:~ stt:p process, in which -l” tluctuat4es first iuto it 
rIu;trk-Antiqnark pdr. which then scatters otE’ the h&cm. The c;rq pair is in it 
coklw singkt state, so it forlns a d076r d@dt!. 
ii) The essentid of the quauturn evolut.ion is put in tlw haclrorr ~v;lvrfunct.ic.Jll, 
which carries most of thr energy. The diIJ& ~wa~~~fl.lnction. (>u the other lmd, 
is simple and given by lowest. order perturh;ttion theory. LIorr precisely, if 
(1, Iy>+ 1 << 1, then t,lie dipole is just. a. quark-anticluRrk pair, without atlditionnl 
gluons. 
Thus, in this franc, all the non-trivial clynainics is in the clipr~l~-haclron scat- 
tering. Because of the high energy of the yij pa.ir, t.his scattering mu be trecJ.trcl 
in the eikonal approxinmtion [do, 41; d2, -l-l] : the quark (and the anticluark) 
follows a straight lint- triLjector,v with z = t (or d + = (1). itlltl t.llP &eCt: 0f 
its interactions wit811 the colour tield of the ldronic target, is contained in the? 
Wilson line: 

(3.25) 
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, 

where ZI:I is the transverse coordiru~te of the qulirk, P’s are the gencra.tors of the 
colour group in the fundm~ental representation, irud the synbol Y’ tlerlotes the 
ordering Of the colour matrices A’ (7) = AZ (.?)t’” in t,he rsp011er~t from right tts 
left in increasing Order Of their s- arguments. Note that A+ is the projrct.ion 
Of Ai” nlong t,he tritjectory of blie frmiion. For aii initSiqimrli with transverse 
coordirmte .y~ the corresponding ga.uge factor is T’(,L/~ j. C%arly, we :&pt here 
:I. gauge where -4;f # 0 (c.g.. tlic covm?niit gauge to hr dismssrd at lriigt,li in 
se& 2.3). 
It. cm then be shown that the S-niatris eleinent fbr the djpnle-liacl~:on scat trriug 
is 0bt;~inrd by averaging the tcAn1 gauge factc’x t,r( 1” (.rl ) I -(!/I )) (,tlrr colour 
trace occurs since me consider a colourless qg st3t.e) over 41 the cOlour field 
corifigiuxtions in the haclron wavefunction: 

(2.X) 

The dipole frame is like the hadron infinite momentuln frames ill f.1lit.t ,v/~,,~{~~,,~ z 
‘T, cf. eq. (2.24). so the average in eq. (2.26) ci111 l)e c~~rriputecl wi:itliin the effect.ive 
theory of Sect. 2.1. t,liat is, like in eq. (2.6). 
The dipole-liadron crc)ss section for a dipolr of sizr 7.1. = ~‘1 - !/L is obtained 1)~ 
integra.ting 2(1 - ST (.1.1, ;/I )) over all the iIllpitCt piLlXlMh?rS bl = (.r._~ + !/_~)/2 : 

(2.27) 

Finally. the y”-hadron cross-sectiOn is obtained by convoluting the clipole cross- 
section (2.27) with the protJal)ility that t.1it-t incoming photon splits into it ~(7 pair: 

Here, Q( 2. rl; Q” j is the light-cone ~vYa.~rrf~mct~ion fbr a phot,nn splitt.ing into a 
q~ pair with tra.nsverse size 1’1 and it fraction 2 c.~f the ptiotc.m’s longitudin~~l 
momentum carried by the quark [40. 411. 

2.3 The classical colour field 

From the point, of view of the effect3ve theory, the high density regime i.Lt small 
x is characterized b,v strong classical coloiir fields, wll0Se non-linear dyria.niics 
must be trtWtfY1 esact,ly. Indeed. we shnll Poor1 clisct Wt-‘r tlM. <rt, SiLt.I.lratiCm, 
sqs, cy) -4 l/qq, which via eqs. (2.16) ~111t.l (2.6) implies classical fields with 
amplitudes A’ - l/r/. Such st.rniig field:: miiiiot~ l~r espnntled Out from the 
c,ovitriant derivative D’ = il’ - i!g.l”. Thus, we iired the aact solution to thr 
cla.ssicsl equatic-,115 Of motion (2.1), t,lia.t we shall now ooiist,ruc:t. 
We note first t.hat., fOr a l;irgr ~~l;rss of gilllges, it is consisteut t.0 look fc)r solutions 
having the following properties: 
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Cl = D,,F’” = D,)FJ’ + D,F+’ + D-F-‘. (2.30) 

But D+ = D- = 8- - ig<-!- vanishes by eq. (2.29). and SO dotes F-‘. Tllus 
eq. (2.30) reduces to Dj FJ’ = 0. which implies P.1 - 0, :I.$ indica.t,ed in eq. (2.29 j. 
This further implies that t,hc trunsversr fields A’ form a t~~-il-climen~iurlal purr 
gmge. That8 is, there exists 2.1 gouge rotation Zr( .I‘- , .rl) E STJ(N) such tZlmt. (in 
matrix notatkms u.ppropriat~e fur the acljoint representat,ion: A’ = .A6 T’I, rt.c) : 

A’(.r-..KI) = L u(.r-%.r’l) iwt(.r-J,). (2.31) 
!I 

Thus, t.hr requirenlelrts (2.29) leave just. two indrprnclrut. fir.1~1 degrees of free- 
dom, A+ (27) and U(a) ( which are further reduced to one (eiher =1+ or II) hy 
imposing a gauge-fixing condition. 
We corlsicler first the covariant gauge (CUV-gauge) ij,,.-l/-’ - 0. By rqs. (2.29) 
;.rnd (2.31). this implies i), A’ = ~1, c)r Ii = (1. Thus, in this gauge: 

/if(J) = hl-‘+c\,,i.r-, *f’l). (2.32) 

with LX, (.?) linearly r&ted to the (~oloiir smirce fit, in the CUV-gauge : 

- Y;c~,~(.?) - /7,,(.?j. (2.33) 

Note that. we use curly lc%ms to dcnotc ~olut.ions to tlx classical fidcl equations 
(as we did already in eq. (2.6)). Besides, WV ,ge~~eritll~ ~1s~ ij tilde to indic~tte 
quantitirs in the C’OV-gaugr. dtliougli we kerp t hr simple not~abion 0 ,7 (.Z) for 
he classical field in t,his gauge , siuce this quantity IT-ill be frequently usrcl. 
Eel. (2.33) has the swluticm : 

where tlir infrared cutoff /I is necessary to imert. the hI.IliKW~~l ~J~E%~tOr in 
two dimensions, but it, will eventidly tlisa.ppear fioiil (or get rephetl by the 
c:oiifinernent scale ilopu iii) our subsequent fcmnulae. 
The only non-trivial field strength is the eleckric fidcl: 

pi = --iytr ” ,I . (2.35) 

In terms of thr ususl elect.ric (E) and nragnetic (B) fielcls, this solut,ion is clmr- 
acterizecl by purely transverse fields, El = (El, E”) ;ulcl Bl = (B1. B’), wlricll 
are orthgonal t,o each cher: El RI = 0 (Gnce HI = -E’ ;IIld U’ = ,!!?I). 



XI compute Ike &on dist.ribution (2.lti). one r~eecls the classical wlution in 
the LC-ga.ugr A+ = (I. This is of the form Jf: = .#“A~, with &(.I.-, .rl) a 
“pure gauge”, cf. ccl. (,2.31). The gauge rotation IT( .F) cwl 1~ c.ht;r.inrcl hy 
iuserting the Ansatz (2.31) in eq. (2.1) with hl = + t,o decluee ttu ec~u;hon for U. 
Alternatively, ad simpler. the LC!-gaugr solution CRU he c-htainecl 1.)~ 81 ,qau,qe 
rotatiorr of the solution (2.32) in the CrOV-gauge: 

Ey. (2.X) is easily inverted to give 

(2.3s) 

Fr0i11 eq. (2.X), A’ is c~hinetl iudrrd in the form (2.31). wilitll Zl givrii in 
rq. (2.38). The lower limit. ;r, -) -w in t.llc! iiit,rgral over .r- in f-q. (2.38) 
has been clioscn such as t.o impose t.lie “retarclecl” hundary condition (2.20). 
Fhtliermorr: 

F+‘(I) FEE i)+“Ayiy = r7(,~)i+‘(,~)llt(.~). (2.31) 

Together, rqs. (2.31). (2.34) aud (2.38) provide ibii wplicit. esprrssion for the 
LC++uge solution A’ in terms of the colour sc)urce fi in the C’OV-gul~ge. The 
corresponding expression in terms of the colour sourw in th LC!-gauge /I camlot 
be easily oLtairrrd: Eq. (2.33) implies iudeed 

- Tit? = (Tt p V, (2.4~) 

which implicitly detwmines o (and thus lf) iii terms of 11, but, which w* dcJrl’t 

laow 110~ t.o solve explicitly-. But this is uot a diticulty, as WP argur ucw: 
Recall iaclefxl that thr classical source is jiist, ct. “clumuly” vari;hl.~k which is 
intcgmted (jut in computing corrrlat.ions wxwclh~~ to tq. (2.6). Both the mei.l- 
sure and the wright flmction in eq. (2.6) are ,gauge iuvariaut. Thus, tine cnu 
compute correlation furictiona iii the LC’-gal&y l)y perhrming it clla.rlge of wri- 
&les /’ -+ jj, ant1 this replacing t.lw ii. priori urllrrlowrl f’miction;~ls A’ [p] l>,v the 
fuiictiorials St” [fi], which are kriowi explicitly. In cklirr terms, 0~1~’ mli rrplwe 
eq. (2.6) by 
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iUoreover. the ga.uge-ili~~ariaiit, 0bservaMrs (xii lx esprwsrd directly iii terms of 
the gauge fields in the COV-g;~uge, wlthou~li the c~~~rre~p~~~Ilcliily?; rspressioris may 
look more corriplicated tliari in the LCY-gauge. For instance. t.lie olwntor which 
ent.ers tlic glum~ distribution cm be written 11s (cf. rq. (2.39)) 

where the classical fields are in the LC:-gauge in the 1.h.s. a~~1 in the CK)V-gauge 
in the r.1l.s. mcl /I aucl IJt are given by ~1. (2.38). Both writings mpress t,he 
gituge-insr~rin.nt operator (2.18) (wit.11 the path 7 in Fig. 11) iu the indicntecl 
gauges. (Indeed, U-Z(.7, G) = ZJt(Z)U(,~) for the WV-gauge field & = P+rl-.) 
Note that, while in the LC-gauge the non-linear effects are encc-xletl in the electric 
fields .7=+i, in the C:OV-gauge they are rather eiicodcd iii the Wilson lines lr md 
IJt (the correspcrndiug field F,:” = --i?c~(~ being linear in fi,, ). 
1Jp to this point,, the longitudinal structure of t.hr source hiis l~wen nrt.)itmry: 
the solutions writterl above hold for any function CP j.r ). For what follows, 
however, it is ilseful to recall, froni Sect. 2.1, that, cj has is localiztd near 
.I‘- = 0. More l.mcisely, the qunnturn analysis iii Sect. 3.4 will tlriiioiistr;.~.te 
t.liat the classical source at, the lon~ituclinal scale I; .+ has support. at posit.ive .I’-, 
with (1) < I’- <: l/h+. Frorl~ eqs. (2.33)-(,2.34). it is clrar that this is also the - 
longituckal supportS of the “c’oulou1l~ field” (i( .Fj. Thus, integrals over .I’- as 
that in ccl. (2.38) rrceiw ccmt.ributioiis only from .I’ - iii this liiiiitwl raiige. The 
resulting longitudinal structure for the classiwl sollkiou is illustrated ill Fig. 12, 
and cm be ;tpproxiiiiamxl 21,s f~~llows: 

1“ (.(.I) s F’rsp (2.45) 

Iii prrtctice. IF(.r.-. .z._L) = I’(.r:l j for my .I’- >b l/h:‘. Not.r tllilt (2.45) is the 
sii.nle Wlson line as in t.he discussion of the eikonnl a.~jpro>;inlaticjrr in Se<+. 2.2.2 
(compare to eq. (2.25) there). In the present context, the eilwnnl a.pproxinistioii 
is implicit in the special geometry of the colour source in eq. (2.1)) which is 
created by fast moving particles. 

2.4 The gluon distribution of the yalence quarks 

To compute observa.bles in the effective theory, one St&ill IEW~S tt,ll tq~ression for 
the wig&t function 11; [/-I]. Before discussing t,hr ,~enwul construction of W, [I)] 
ii1 Sect. 3, let 1.15 prrseiit it simple mxlel fbr it., tlllr to nIr:Lt~rra.ri-~‘eii~i~c~~~~~~l;iii 



A’ 

l/k+ 



(with 72 = the number of quarks per uuit t.riknsverse area, h! the radius of >i single 
~‘m.leo~~, md RA = A l/“R the radius of the ruc~lr~ts) increases with A, hut: these 
quarks are confi~z~tl within different. I~W~WIIS, SO bhq are niicorrrlat~rtl. LP%en 
tlie number of pnrtons AN is large rucnigli, t,llf! esterrial probe “sees” thein as R. 
classical dour source with it raiidcm distribution over ilir tmmsverse area. The 
total uo1oi.w charge Q” iii the t.uhe is t,lie iiicolierent sum of tlir c-dour diiaF;e5 
of the individud purtoiis. Thus, 

where we have used the fact tl1a.t. the colcmr c:llarge scp.ta.retl of a siuglr quark is 
g”t” t” = .q’C:f. Orie can t.reat t.liis charge as classical since., dim AN is large 
enougli, we ran ignorr cxmiuiutators of ClliUgM: 

(2.=4x, 

In order to t&e the cont~inuiun limit (i.e., t,lie limit. where tlic tBrxisverse ihrm 
AS; of tlir t.ube is s~iiall”). it is convenient tcb int,rcduce thr dour charge 
densit,irs pCL (rr-. .I’J) (with the same meaning as in Sect. 2.1) i.mtl 

Here, /IA N . 41/3 is the average dour charge squared of t,hc valence quarks per 
unit transverse area and per colour. and X.4 (.r-) is thr ~orrespoudiug tlensitJ 
per unit volume. The lst,ter 1~s some depcwde~~~ q>on xc, whu~~ prec%r 
form is, liowev~r, not importznnt since the final formulae will involve only the 
int~egratecl density /LA. There is no explicit clependruce up011 .L’I in j1.4 or X.4 (.7:-) 
since we assume transverse homol?;eneity within the nuc1eil.r disk of radius R,). 

“This mnounts t.o increasing Q 2, so, strictdy speaking. at t,his step out: shollhl also include 
t.ha DGLAP quantum evolut,ion (i.e., t.lle fact. that, with iucrea.4n.q t.r;msverse resolutkm, t,he 
c~riginal L‘cparlc” is resolved iuto a set of smnllor c,ollst,it.uent.s). The qunnbum nualysis t,o h 
discussed hter will include t,hat. ill t.hc “dc~ubl~lv(: nl.)proxitnatioll”; sw Srct.. 5.3. 



Finally, t$e correlatkms are lotrd in .I’- since. iis nqg~1~~1 lwforr, crolour sources 
at different vnlurs of .I’- lX?lCmg to differrut 1111~1wIq 50 t.lley are UIKYXT~littd. 
All the higher-point, connected, correlation functions c.rf 11,~ (Y) are ass~~~~m.l to 
vanish. The IKE-zero correlators (2.51) nrr generakc-I Iry the following weight, 
function [8] : 

(2.52) 

which is a. Gaussian in [la, with a lOC?ill kernel. Tlk is gauRe-invRri,2llt,, so the 
variable p. in t.liis expression cm be the dour wurce in any gauge. The integral 
cwr 3:~ in rq. (2.52) is rffect3vely cutoff at R.4. By using this wiglrt function, 
we din11 mm conipute the olwrwbles iniwctuced in Sect.. 2.2. 
C!onsicler first the glucm distribution in the low density regime, i.e., du3i the 
;rtoniic number -4 is not too high, so that t.he corresponding classical field is 
we& nncl cm be cornputecl in the linear ;I.I)proxilniLtioIl. By espancliqg the 
general solution (2.31 j t,o linear order in 0, or, ec-~ili~~;llent.l~, by directly solving 
tdle linearized version of eq. (2.1 j, one eilsily obtains: 

wliicli together with eq. (2.51) implies: 

By inserting t.lris a.DproxiInnt.iorl iu ctqs. (2.23) ;.mtl (2.16). we oLtain:: the fol- 
lowing estinmtes for the gluon density and t:list,ribution function: 

(with 0, = g”/-ln). The int~egral over kl in the second line 1~1.s a 1og;rritlnnic 
infra,recl divergence which has been cut t.y hand at the scale fI~(‘j-- sinw we 
know that, because of confinement, there cannot he gluon nlotles with transvrrsr 
wwelengths larger thi l/fl~C~n (we also FM. 1351). 
We recognize in rq. ( 2.55) tdie stantl;irtl l)rttnis~t,r;~lilL~I~,~ sprctruin of Soft “plio- 
tons” radiated by fast moving clia.rges 111. III tleriviilg this result, we have 
lic.nvrver neglected the non-ALelian nature of the ri.kliidetl fields:. i.e., the fiXt 

that they represent. glixms. and not, pliot,ons. This mill be cnrrected in die next 
subsection. 

2.5 Gluon saturation in a large rmAeus 

According t,o eq. (2.55), the glllim rlrldy in tlw t,ra.nsverse plmse-space is pro- 
portional to PI~/‘~, arid hccmiw arbit,rarily large whrn =I iucrrases. This is 
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however an artifact. Of our previous approsirnat,ions wllicll llave nc&Aed the 
interactions among the radiated gluons, i.e. ~ the nw-linear rtiects in the classi- 
cal field equations. To see t,his, onto nerds t,o recwnlpute the gluon distribution 
by using the exact. non-linear solut2ion for thr classical fiicld, as ol-knined in Sect. 
2.3. This involves the foll0~Cig LC’-gi:1U#Y field-field c0rwlatc:r: 

which, in view of t,lw non-linear cal(~ulat,ion. has Lrc-511 rrwrit.ten in teruis Of 
the c:lwsicitl field in the COV-gauge (cf. rq. (a.-u)j, whtxe .F2l = --iYcl,. To 
P\-idl*itte (2.56). one expands the S~~ilson lines in powers Of (1 iiiid tdirn tront.ru& 
the a fields in all the possible w;q;s witA t,lle following propagator: 

(2.57) 

We have used here fi* (I-, X:,) = kitr’(.I.-. /;I), c,f. eq. (2.3-l.), togc%her with 
eq. (2.51) which holds in a.ny gage and, in Izvticlkr, in the C’OV-gauge. The 
propagator (2.57) is wry singular as k~ - 0, hut. this turns Out, to lw (;tlriiost) 
harmless for the considerations to follow. 
The fact t.1l;r.t t,hr fields ct are uncorrelated in .x7 greatly simplities t.he cxlcul;3thn 
Of Ore c:Orrelat,or (2.56). Inderd, this implies that t,hc two CWV-gauge electric 
fields #trb(S) and iPa.,( $ can l)e contracted only together. iUlC1 not with the 
ckher fields CL generatSed when exp;tntling tAe Wilsc )IJ lines. That. is: 

UY! lick dkJWd by the orCkTiIlg Of the b?kC)I-l liIleS ill .I:- : f.v( z-, !/I) hs beeI 

gnlerabed by rxpanding IT+ (~71, wllich requires ;: - ec !I- (and similarly II - <: .I’- ). 
Tller~, the first contraction in (2.59) implies .I‘- = ,I- SC !I-, while the second 
One leads to the contradictory requirement y- = 11~ e”: x- 
The dlowrd contractiOns in eq. (2.58) involve: 
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which is like t,he Smatris element, (2.X) for the dipole-h&on scxttering, l:mt 
now for a dour dipole in the &joint rfymseut,atioil (Le.. it dipole rnnc-le of two 

gluons). This cm be ccmq~nt.etl 1)~’ rxpauclin,q the Wilson lines. performing con- 
t,ractions with the help of eq. (2., 57)) id recognizing tlrc: result, as the expansion 
of ari ordinary exponential. One thus finds (SW R18D Sect. 5.1 fi)r it. morp riapicl 
clerivil;rticrn) : 

(2.fil) 



which together with Cq. (2.58) Can br llsecl to findly f+Villllik.tP t.he glum1 c1ensit.y 
(2.23). This requires a tloulde Fourier transfornl (to k i mcl X-l), as sl~ma 
in rq. (2.17). The presence of the d-function in eq. (,2.5x) udw tlw Fourier 
trmsforni to k+ trivial. ant1 one get.s: 

where (cf. eqs. (2.57) iml (2.63)) : 

(2.(Z) 

Tile non-linear rffects in eq. (2.06) i\re c~ncoclctl ill tlw quantity S.1 (.I’-, r.l), 
which finds its origin in the @ll,ye rot.at.ioiis ii1 the r.1i.s c-If HI. (3.N). In 
fact,, 1:1p replacing S.4 (.I:- , rl) - 1 iu eq. (2.G). miti woultl rwwr the linear 
app’oxirnc~t,it.ioil of rq. (2.55). To I)erforrn t.lir iiitfqd mcr .I’- in cq. (‘2.66). 
we note tha.t the yuaat.ity (2.6;) is c.m~ntiall,v the de~iwtive 1v.r.t. .I’- c-d the 
expoikmt in S.4 (x- , rl), rq. (2.65). Therefore: 

where 
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non-trivial order (which ~orreaponds to the liiieal ~~pp~O.~illliLtii~l), ullr cJht.ains 

the l~r~nlsstralllUllg spectrum Of t’c.1. (2.55): 

pioj 

ii) At sr~all momentn, kl CC @,,I, the dominant contribution c~m~es from large 
distances 9.1 ,,> l/Q,i, where oIie cm simply neglect. the exponential in t.he 
nuruemtor ant1 recogrrize l/r: as ille Fourier tmnsforrn’ of In k: : 

(2.71) 

There are two fundarnent.a.1 differences between erp. (2.X) ;uld (2.71). which 
refer kmtli to a sat umfion of the increase of t,lie gluon density: eit,lier with 1 /ki 
(at fixed atomic number A). or with A (iLt8 fisetl tram\-erse uicmient,i.im kl). In 
both cases, this mtumt.ion is oril~ rntr7:qirrol : in tSlle lOT?l-1i.l regiim, eq. (2.71), 
t-he gluon density keeps increasing wit,11 l/X::. iuid also m3h -4, l-but. this increase 
is only lopwithm if, iii CTJlltrilSt to t.lie Strong, power-like: iIlcrri.l.st? i.x (A1i”/l<;-) 

in the high-/cl regime, q. (2.x)). 
ILloreover, the gluorl clensity at low k L is of order 1/(1 c , which is the maxiiiiuru 
density tallowed hy the repulsive irltrractioiis between the strong colour fields 
A’ = Jm Y l/!j. When iiicreasinfi the atoinic numb3 A, t11e uew gluons 
;are produced prepond~renlt~1.y at. large trunsverse mmeuta 2 Q.4, whr~ this 
repulsion is less import.aut. This is illustratc~cl in Fig. 13. 
To 1~ more precise. t.hc true scale which se~)i~Yat.es l.kxveen t.llr t,wo re,gimcs 
(2.70) and (2.il) is not &),a, but ratSher the satm~tdm. m~/)mt~m Q, (-4) wllich 
is the reciprocnl of the clistnnc~r l/r-l where the exponent in rq. (2.68) kcomes 
of orcler OIW. Tl~s, this is defkled as the solutiou to t.he followiq eclll;lt,iorl: 

(2.72) 

To clarify its plrpical illterpretation. rlote t,hn.tt. ii.t sllurt-tlistmces 1’1 CC: l/Q.4. 

(2.73) 



Figure 13: Thr gluon phasr-space &n&y .N:~(kl) of it largr lluclel.ls (as c-lr- 

scribed by the hlV model) plotted as n fimction of 1;~. 

is the average ccJhur charge squared of the glucms having tranverse size 1.1 per 
unit area aid per colour. Then, eq. (2.72) is t,lir coiidit.ion that. the t&h1 c~lmr 
clmrge squared within the areit occupied by mch ghmn is of ordrr one. This is 
the original criterion of saturation 1)~ Gribov. Levi11 am:1 R y&in [f.5]. for which 
t.he hW model offers an explicit realization. 
To conclude t.his discussion of the hIV rnotlrl, note that, in the prr:vims ctsrqu- 
tation, me lmve also obtained t.he 5’-l~lutrix element S‘,A (1.1) for the tlipole-llnc-lroll 
scattering (cf. Sect. 2.2.2). Tllis is given by eq. r2.s.5) with /1,4(x- ) - 11.4 aid 
NC = 'T"2" rrplacrd in gem4 lrj the colour (.'i-rsimir f” t” for the rqxesrrit;~tion 
of intrrest (e.g., C’,f = (N,? - 1)/2f2;, for the fur~dxnmtirl repre~entttbic,n). As 
discussed after ~(1. (2.61). this de5cribcs the multiple smttrriilg of t,lie colour 
dipole on the colour field in the lmdrtm (here, the field of the valence quarks). 
According to eq. (2.(S), one (~1 distiuguisll. here too, ~~WWWX-U a short-&stance 
and it large-distancr regiine, which niormver are sepm~tetl by the s~nie “mtu- 
rntion scale” as for the gluon dist.ribut~ion: 
i) A srrra.ll-size dipole 1.1 ~3:: l/Q, is ml-y weakly interacting wit+11 the liwclron: 
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H situa.tion ccJn~n~only referred t c) as the “black disk”. or xuitarity” . limit. 
The renur.rkable fact that the criticxl dipIlk size is set by the sat.llration scale 
WI; can be ui~clerstood its follows: A small dipole - s;lnall :-IS coinpa~red to t,he 
typiCa. VarizLtiOIl sc&! of the ex~erlld ~~Oilhlk~ field - ClJlipks to th? WW&l.te~:~ 

electric field .Pti (cf. eq. (2.62) ), so it,s cross-srcticxi for me s:ratt,eriiig, q. (2.Cil). 
is proportional to t,lre uumber of gluons (F+‘.?+’ j within the tr‘nnsv~-brse itrea 

7.; explored by the dipole. This is manifest 011 eq. (Msj, whose rspcx~ent, is 
precisely the colour charge squaerl of the gluons within that i.Ll‘ea (cf. the remark 
after eq. (2.74) ). At, si~turat.iou, this charge becomes of order one, and the clip& 
is st.rongly intrraot,ing. The import;lnt, lesson is t,llat t.lrr iinitarity limit (2.71;) 
for the seaWring of a ~isll clipole on il high energy harlron is ec~uivalrnt tc.) 
ghm sa.tUratbIl ill the hdrOll W~~vefUIlCtiCJIl [Jo, $1. 10. 45, lJj. 

3 Quantum evolution and 
the Colour Glass Condensate 

In this section, wr show thi.it the classical Yang-hIills theory dexribod in Sect,. 
2 (*itll be xtually derived from QCD as an effective t,hrory at small s. This 
requires integrating out. qunnt,um fluctuations in layrrs of /I+. which ca.n be 
done with the help of a renornlnlizlltiorl group equa.t,ion (RGE) for the weight, 
function I4.Vr [/I]. WV shall not present all thr (*;tlculi.~t.ions leatling to this R GE; 
this would require heavy t.ec:hni?;~l tlrx&~pnients going far l.Jeyond t.he purpose 
of these lectures. (See Ref. [37] for more details.) RLrt.her, wt‘ &~.I1 emphnsize 
t,lie general strategy of this cnnst.ruct.ion and the pliysic;tl picture beliiild it. (that. 
cJf the C.OlOUr glass) q tOlr;ether V&h thJse eklrIelltS Of th ~~d~~llk~~~k~ll dlkh W? 

important t,o m~derstitntl the structxre of the final equat.ion. 

3.1 The BFKL cascade 

111 SfYt.. 2.1, W?ie have wrgl.led that. the ratliilti011 of it soft, ~11~1011 hy ;I fast ~)il.?3,Oll 

via the tree-level graph shown in Fig. 10.a can be tlrscribrd iis a classical 
process with R colour source whosr structures is lnrgerly fixed I )y the kiuemat.ics. 
Our main goal in l&is section will be tr) show tht this picture is not spoilt 
1)~ qunntum corrc~ctions. We start by showing t,hat. t.he c loiiiinant quant,um 
corrections, those which will be resiimmetl in what follows, preserve indeed the 
separation of sc&s which lie :: at. the basis of the rffrctive tliPory develop~cl in 
Sect. 2. 
C!onsider first tulle lowrrst-order radiative correct iou t,cr t,he trrr-level graph in 
Fig. 10.~1, nnmely, tile eulission of one additiona. ((llIi~nt.um) gluor~. its sl~own 
in Fig. 14.~ At, the xl.rne level of xcuracy, one sl~c~~~lcl include ;11sc.J t,he vertex 
and self-energy c*orrections illustrated in Fig. l-l-.1:1, V. This will be tlone in t,he 
complete ca.lculation presented in Sect,. 3.4. But iii order to gei ii simple or&r- 
of-ma.gnitude estimate for the qunntum corrections - which is our purpose in 
this subsect.inn - it: is cm:nlglI t.rJ consider the ratlintivr ~~rocess in Fig. 1-C.n. 



The probalG1it.y for the emission of a quantum gluon with lougit~udinnl momen- 
tlllll p;t in the range p+ :> pf >, Ii+ is 

(3.1) 

This becomes large when thr! available interval of rnpidity AT = ln(l/x) is large. 
This is the typica. kind of qumtuui correction that we would like to rwuiii here. 
A calculation which includes effects of order (~8,~ ln( l/x) )” t.o all orders in I! is 
said to be valid to “leading logarithmic nccuracy” (LLA). 
The typical coutxilmtions to t.lle logarithmic integratiou in tq. (3.1) cc.me from 
modes with niomeiita p ;’ drf$,q inside the strip: p+ ma p;f ‘> Ii+. Thus, in 
Fig. 14.q the soft final gluon with momentum k + is rniitt,ed typically froin a 
relatively fast gluon, with inoineut.iun ~1: > I, -I-. This latter g1uc.m can therefrwe 
be seen its R conrponriit of the t;ffr~tiw coltrur source at t.lie soft s(& I;+. III 
other t~erins. one CR11 vim&e tlrc combined effect of tli? wee-level process. Fig. 
10.~1. il.ud the fir&order radiatire correction. Fi,q. lh, ;.ts t.lIr genrr;ltion of n 
modified colour source nt the sc;alc kt , which receives CC mt.rit mtiions onlg from 
the modes with longitudinal momrnta. much l;qer tShun 1;". This is illmt.r;sted 
in Fig. 1.5. 

I+- 

+ 
Pt 

k- k+ 
= 

Figure 15: Effective rrrlour sollrc’t’ a,ft,er including the low&-wdcr radiative 
correction. 

Clearly, when x is srna.11 enougl~. ln( l/s) w l/0 s, t&e “wrrwtkoni (3.1) hemIIies 
of O(1) 3 and it. is highly probable that, 1Ii0w gluo~is will lw emitted ~lc~iig t,lic 
wa.y. This givrs l)irtll to tlw ,qluou (.*iiscade depictecl in Fig. 10.1.). whose domi- 



p+ E p;t ‘>> p; ;>a p; ;;> . f . ;:,> [,A, E 1;‘. (3.2) 

(C)her 1i1u1ne1itmxi aderings give c,c)1it.ril,ut.iori~ wliicli ilrr si1ppressrcl by, at 
least, one factm of l/ ln(l/s), alit1 thus mu be neglwtrtl to LLA.) With this 
ordering, t,his is the fm1cms BFKL ~wtrade, that we mc-~1ltl like t.o include in our 
effective source. This sl1oulcl be possilh since the hierarcl1y c.)f swlrs i11 eq. (3.2) 
is hlcket:l cOllSktWlt With the kheln~ltkL~l aSSUlIl~JtiOilS ill %Yt. 2. 

Note first that. the strong mAering (3.2) in lvngitudinal 1noruenta implies ;t 
corresponding ordering in the lifetimes of the emitt,etl :~luons (cf. rq. (2.2)): 

At:;: >> LLc+ >,z A.t:‘t 1 ;>;. . . . :c. A& (3.3) 

Because of this. any 11ewly eulitted gluw lives t.oo shrtly to 11c.hce the dynamics 
of the gluons above it. This is t.ruc in partic~ulnr for t.hc 1;~ cmit~trrl gluon, with 
I11OIll~IltUII1 k+ , v&cl1 “Sees” tile N previous glU01lS iii the C?lWklde i\S it. fWZe11 
c~ckw charge dist~ributioii, with a11 avemgr coloi~r charge Q = dm - Ai. 
Thus. this (N-t 1)th gluon is cwittcd cohc~wnfly off tlw colour clwrge ffuct~untions 
of the iV previous mes, wit.11 il. tlifferr11ti;~l prohl~ilitg (c~oilipiw tc) rq. (3. i j) : 

N(T + tlr) = (1 -I- N(T,)dP,~ -I- 1V(r)(l - c/F’,\;). 

which together with ccl. (3~4) implies (wit,11 I?,* z fh,*ilJ, /ir) 

Tbs. t,he gluon clistribut~ion grows esponnntially wit11 T = 111( l/sj. A 111ore 
refined treatment, 11sirrg the BFKL rquatkm, givrs ti = 11112, a11d slmws t,ht 
the prefwtor c’ in t.lle r.1i.s. of eq. (3.6) his i.KtUally a wrnk deJx3lcb?Ilc~ cm r : 

c ‘X (n,TTj-“2 [3, 41. 

Thus, the BFKL picture is that. of an unstable growth of the colour charge 
fhctuntions as s becomes smnller aucl smaller. I~orwvrr. this el-c.hlutioti RS~~~II~~P 
the radiated glU0llS t0 l.~ehW ils free pi3.rticlrs. SO it WilH(W t,O hr VidiCl iLtr veq 
low x. where tlJe gluon density becomes so large that. t.lirir lIlllt~llil~1 iiit~erwt.ioiis 
cannot Le ueglrct~d anylonger. This hppens. t.vpicall,v, m11r11 tll(l int~maction 
prchabilit,y for t,lie racliated glu01lP ljCCOIIICS ()f order ollr. cf. rc.1. ( 1.12) ( wliicli 
is aho the critrrion for the saturatio11 effe(8t.s to be iirqwrtwit (coii1pi.w in this 
respect, ~1. (1.12) am:1 eqs. (2.72)-(2.73 I). Tln1s 011~ czlnrrot study saturation 
rwisistrritly without inclucli1~g iiw-liiiear effects iii the ~~Uil.Ilt~Ulll rvoliiticai. It is 
our innin objective ii1 what folloms to rsplniii 110~ t.0 t-10 that. 



Within this theory, the correlnthii functions of t.he wft (/c+ 2 A+) fklds are 
obtained as (e.g., for the 2-IJCh’ funct.ion) 

(3.7) 

where T stays for time ordering (i.r. ~Jrderhg in x+). This is written ill t,lie 

LC-,puge AZ = 0, and involves t5mm functiouili integrals: 
a) ii qumtuin path int.qrd mm tlw soft, glwn fields .A” at fixed p: 

(TA’-‘(X)/~“(W)) = 
.i 

‘DpTIV,,+ [p] (T=l”(.l,)A”(!/j),, . (3.!J) 



where IIJ~[A-] is a Wilson line in the temporal clirecbbii: 

(3.11) 

With this action. the condition SS/(!A b” = 0 implies iucleecl eq. (2.1) fbr field 
configurations having A, = 0. Thus, the clussicd solution At; = #“A:, [p] fouucl 

in Sect. 2.3 is the tree-level field iu the present, quantum tliec-Jry. 
As long as me are interestrcl in correlation fbctions at the acnle A+, cJr diglltly 
I-~rlow it, we ~RII sdisfy ourselves with this classical (or sncltlle point) a.pproxiina- 
t.icJn. Tl1a.t is? t.o the accuracy t,o which holds the effective theory in ctq. (3.7)) t,llr 
gluon correldions a.t the sca.lc A + can be cornput~rcl from die classic31 field solu- 
t.ion, as in eq. (2.6). But cliinntum corrections becc.~me important when wc con- 
sider correlations at. a much softer scdr j;+ *:c iI+, Rlldl that. (8,5 lll(h+jh:+) - 1. 

II) Within the quant,um eff’ec%ive theory, WC’ integrate out the scw i-just clnnntum 
fluctua.tions. i.e., the fields with longitudinal momenta inside the strip: 

011+ <C ]p+l ~5.: A+ . with b e:c: 1 and c-t. lii( 1 /b) <: 1. (3.12) 

This generates quantum rorrect,icJns t.o the c~orrelation flmctions at the softer 
sca.le BA.+, which can be conyJut.ed I-my tlrcomposii~g t.he total ,qluon field its 
follows: 

*-If! = At! [p] + trf! f &4$!. (3.13) 

Here, A/,” is the tree-level field, rrl,l are the semi-filst fluct.llations to he integra.td 
out, and bA$ a.re the sf.$ modes with momenta lp+] 5 /A+ whose correlations 
receive cpant.um corrections from t#he semi-fast I?;luons. 
These ~~r2.rl~efi correlat.ions must IX computed to leading order in CL,? ln( l/b) 
(LL4), but to ~111’ orders in the classical fields A’ [p] (since we expect A’ = l/y 
at satura.tion). This amounts to a.11 onr-loop dcd~tir)n, lmt, with the exact 
1Jsckground field propqptor (nf’ (~)a” (yj), of the semi-fast. gluons. For instance. 
the qiiautmn ccJrrect.irms t,o the 2-point fuuct.ioii rra.cl schemat.ic;tlly: 

wlirre the brackets (. . .)(, stn.nd for the cp;mturn itverilgl3 over the semi-f& tieltls 
in t,he background of p; this average is defined as in eq. (3.8). 1:Jut. with the 
fimctional integral now restrictetl to the fields 0,. . I’ The purpose of the quantum 
dCldAk~~1 is to proviclr rsplicit. expressions for the l-point function (6.-l’) /, and 
the 2-point function (b-4’ dAi), i1.s fiinctioiids c of p (to die indicated accuracy). 
Once t:hese expressions are known, the Z-point fiiiict.ioil (,-l’(.r:)A (g)) at, the 
scde bhf can l,r fhlly conlpla!t:l ;.ls: 

(A’AJ) = (((A’[p] 4-L-lO(.AJ[p] +SW,i,,),,,,, (3.15) 



I Y 

where the externd 1mcltct.s (. * .) \I;, denote t.lJe classical amragf? over p with 
weight function TT:1[/.,], its iii rq. (3.9). 

whew the average in the r.1J.s. is defined as in fq. (2.61, or (,X9). l:mt with weight, 
function T,17,,.,t [/I]. This tlrnlc-)nst,~;J.tes t.lJe mist,enrr of the rffertive theory at. the 
softer scale bfl+. 
Since ATT’ E TTbl,+ - TT- ,y+ c* ~2, lii(l/b), the evolution of die weight fuixtion 
is best. written in terms of mpidit,v: TF;+A, \T; = -~THTI;, where T = 
lll(P+/A+), AT = ln(l/b), ar1d II EE H[p, $1 is a functionad clifferentinl oprrator 
acting on T‘Tl; (genei-dip, it non-1inea.r fuJJctiona1 of ~7). In the limit AT - 0. t.his 
gins a ~encl,~/-lnal,izat.inrr gm q qmfion. (R.GE) c-lrscrihing t.lJe flow of the weight. 
function with T [X3, Xi! : 

(3.17) 

By integrating this equat~ion with initial conditions at 7 << 1 (i.e., at Af - 
P+), one can obtain the weiglJt function at the ra.pitlity 7 of iJJt,erest. The 
initial coliclitioris are not rrally prrtwlxtt.ive, Ixit we citii rely on some non- 
perturba.tive moclc~l, like thct RI\’ Jnodel cliscussecl iJl Srcts. 2&X5. 
A key ingredient in this apprrml~, which nJ;tkrs thr differam 1r.r.t. bhr BFKL 
equation, are the non-linear effects encocled in the l-,ackground field calculation. 
Rwall that p, and therrfore dir clxsid fifirlds A’ [/)I, art- r;tnt.loJn wria.blrs wlicw 
c.orrelat.ors (2.6) reproduce the glum densit.y iIllC1, more genemlly, the +poiiit 
correlation functions of the gl~lon fields at t.lJe s(*ide 11 +. T11us ~JJ’ rc-mJputing 
quantum corrections iJJ the presence of these lwkgrouncl fields, ad then aver- 
il.gillg ox’er the latter, one is effectively studying c~uantuni evolution irr 8 Jnecliurn 
with high gluon cleiisig. ilfter each step iii t,liis evolution, the properties of the 
Juecliurn (i.e., t.he correlatas of p) are uptl;dwzl, lsg including the lntctst <lLliUltLllll 

corrections. In terms of FryJJmm graphs of the ordina.ry perturbation theory, 
this corresponds to a complicntecl resunuuation of diqqxJiJs drsmibing t.lre iiiter- 
actions between the gluons radiated in different parton cascncles and at cliff~ren~~ 
rapidities. A typical such a diagram is showJl iJJ Fig. 16. z4t low clensity, diere 
the non-linear effefects car1 be urglwtd, rq. (3.17) correctly reproduces the BFICL 
equation [X], as it. should (see Srct.. 3.5 below). 



i k+ 

Figure 16: A typical Feynmnn diagm.m that, is implicitely rex~n~ned in the 
quantum evolution of the effective tlleory. 

3.3 The Colour Glass Condensate 

Note the spe&l form of t,hr average in rq. (3.7). This is not tllr SUIIW as : 

In eq. (X18), htll tl1e colour SoLlrce /I<, arid tht-5 gaiige fields A$ itre clyxxniical 
variables that are summed over on the same f&&g. They are free to t.n.ke on 
values which extremize the total “effective action” : 

By contrast, in rcl. (3.7), t.he average over A” is t&?n at fixed fJ : tllc? gauge 

fields can vary in response t,o p, but p cannot vary in response to the gauge 
fields. That is, ,n is not a dynanicnl variable., hut rather an %Aernal” source. 
Giving a colour charge dist,ribution p,{ (2) specifies EL medium in which propagate 
the quantum gluons. But this medium is, by belf, random, so after performing 
the quantum analysis at, fixrd 0, one must also perform an i.tVfTEtg~~ ovttr p. ‘I%~ 
reason for treating p and A” clifferently lies is the sepnmt.ion of scales in the 
problem: the changes in p happens on time scales much larger ~lliU1 the lifetime 
of t11e soft g11.1011s. This sit,uation is typical for wmorphtsus materinls called 
.Lglasses” . 
The prototype of such systems is a “spin &lss” [-IS]. that is. ;t c~r~llrct.ic.~n uf 
magnetic impurities (the “spins” ) which are l?UICl~llll~r clistriLut.ec 1 in a non- 
magnetic n-&al host. For instance. OIE can take t.lir spins to sit 011 it Iq’uh’ 



la.ttice with lattice sites i j ,. 3.. ., md interact,ion Hanriltr~ni;.~.n 

HJ[S] = - c J,, s,s,, (3.20) 

(the sum rmis over all pairs i: i..j > , i.tIld tile spins Si ilr? ;Jl(.)Wetl to t&e two 
values. + 1 or -I), but let their interactions (the “liuk variables” Jii ) to be 
random. with a Gaussian probability distribution. for simplicity: 

Physically, this corresponds to the fkt. that the nlc-)tlificlt.t,ions in J,, occur on 
time scales much larger than the time scales characterizing the dyllitllli(5 of t.he 

shrills (e.g., their therIIlaliZ~~iOI~ WheIl &! SyR~ml iS hcJUght ill COIltWt 1vit.h 

a thermal ba.th). In practice, the <J,,j’s are frozen into tkir fixed values 1.)) 
rapid cooling when the sample is prepared. This kind or rapid cooling is cyrlled 
“quenching”, and OIIF: Sil.>W tll;\t the Jfj’S RlY “i~l.l~IlCllKl wriables” I CtS OppOSd to 
the “dynamical variables”. t.lie spins S, . This prc.)cednrc: selects random ~11urs 
for the ..Tij 5, with the probability distribution (3.21). 
Thus, the spins thermalize for a given set of “quenched vitriahlrs” , and for each 
such a set one can compute the thermal partition fimcttion and t,lie free energy: 

Z[<7J = x ,-dwy F[<.J] = -TIIIZ[cT]. (3.22) 
{ ,q} 

But the Ji,j ‘S are themselves rantlum, SC) t.hr exprrimentndl;r- relevant. quantity is 
the following average 

F = @‘[cJ]) s I’dP[.7] F[,T] = -+JP[.J] In Z[,T]. (3.23) 

Not,e tl1a.t it is In Z[,T], not Z\,T] itself, which sl~oultl be :iverilged (“quenched 
itvera.ge” ) . Siinilarly, (counected) correla.tion function s nre generated 1-y the 
free energy in the presence of a site-dependent rstrrnd rrrqyMic f-irk-l: 

with In Z[J. /L] defined as in q. (3.22). but, with H,[[S] - E-l,~[S] - C, h,S,. 
Eqs. (3.23)-(3.24) are the analogs of eq. (3.7) for the problem at. lr~u~d: the 
colour source p<, is our “c~uenched s’i~rii~\)le”. arid the clii;uitum average over the 
fields Al” at fivstl /I, “‘1. (3.8)) corresponds to the therin~~l Zl.\'t?ri:igt! at. fixed .7; j’s. 
ccl. (3.22). As in eq. (3.23), it. is ln 2, and not Z. which is effectively it.\reri.lgecl 
in ey. (3.7) (the average of Z would rather corresponds to eq. (3.18)). In fact. 
the corhn ectefl! correlation fknct.ions of the soft gluons in the effective thrc.)ry are 
obtained from the following generating functioiiul: 

.i 

.A 
D/l rr-,,[f.l] lI1 D-4 (r(AT) F’a.LPl--,,/ ./,A 
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)I (3.25) 



which is the malog of eq. (3.23) with ln .Z[.J] q--f 111 Z[J, A]. (The external cmrrnt. 
j:: in (3.25) is just n device to generate Green’s functions vin clifferentiations, 
mcl should not he confusecl with t,hc physical source /la. j 
We are thus rk~turally lrcl to interprete the small-s cmnpment, of the lmlron 
wavefknction as ii qlnss. with the colour ch&ge rlensitv playing t.lle role of the 
spin for spin glasses. Thus, this is a colou~ glass. Unlike what. happens fbr spin 
glasses, which may have a non-zero value for t.lir average iiluglletiz~ttioa (Si) (at. 
least locally, i.e., at a giveu sit.e), the aserage colour charge must 1~ zero. 

by ga.uge symmetry. In pritc-ticfx, this is iiisurrd by tlir fact. tlliLt we sum over 
all the possible canfigurations of p. (.7) with a gnuge-iii\~~.riant weight, fiinctim. 
Let us however rsaniirie it particular configuration I),: (.?) from this ensemble. 
We now a.rgur that, at, sufficirirtlp small s (or large ate mic nunlt~er A). this 
configumtion describes typically a Bose corrdcn.sc~.t~. 
This applies to the str.tv~ated IIK&S, i.e.. the modes with transverse rnormuta 
AQ~T~ < ICL CK l),s(r) and loiigituclinal inoinrnta k+ = sP+ +<, P+. As argiiecl 
in Sect. 2.5, tllese triodes are clmacterized by a high gluoii number density in 
the transverse phts+sp~~~:f+. ni,(kJ N l/tr,?. (This prediction of t.lle classica.1 
hIV model remains valid after including t.he c~uaituni mmlution, ns we shall see 
in Sect. 5.4 below.) h?icroscopicdly. these ruocks corresponcl to hosmic states 
with large occupation iiunibers = l/aq, Each suc& a state is a Bosr couclensate. 
hkre precisely, the geueral clefinition of a Bose cant:lensate is that of u cluantum 
state in which the Fock space a.nnihilat~ion operator taL(X’) (cf. eq. (2.13)), or, 
equivalelitly, the field optx~tor A::(J), takes on a non-zero cqxxation value. 
This situ&ion may be charact~erized as the spuut.au~ous geueratiorl of a classical 
fiekl. Of course. this cannot happm for gluom in t,hr VWL~UI~, as it W~JL&~ viol;~t~r 
gauge synimet.ry. And, in ibn &solute Sense, &is Ci\.IlIlOt happen iii a liadrcm 
neither. since t.he avenge cck~ur charge vmishes there t.cm (cf. eq. (3.26) ), ancl 
t.herefore so cloes the ;tssociat.rtl classiral Mtl: (.A:.[/)]) = 0. But in the liarlron 
there (m colour sources. mtl, as itrguecl l)rforr, they ml1 Ijr ttvm treated US 

a classical charge distribution which is frozen tliiring the short lifetime of the 
small-x gluons. Thus, over such a short t.ime scale (short as cmnpnrrtl to the 
typical time scnlc! for clmiges in the colour tktribLitkJll), i)llt' &+ct:iv+~l,y lins 8.1. 
non-trivial cln.ssical field d:.[Ij]. At. saturntion, this fielcl is typicall;v st,rong (cf. 
eqs. (2.68) and (2.44)) : 
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We thus see that it is t,lie same fundamental wpxatioii in time smles which 
allows 1.1s to spmk ;hout, ldl t11e colow glnss and t11e Bose Co46fhsO tf=, altllollgll 
t.liclse two concrpt,s seai at. B first, sight cuntmdictory: tl~ notion of in ‘Lglassi’ 
makes explicit reference to t,he cL~tt~~~nyf: over p1 while the “~ontlens;tt,e“ rather 
refers to a. specific realization of /‘q before averaging. 

3.4 The renormalization group equation 

As explained in Sect.. 3.2, the qll;tntum evolut,ion of the ti+fetrtiw throry is 
obt,ained by matching corrolat.ions c~.~mputrcl in two yvs: (a.) via :I ClitSSi- 

cal+qua.ntum calculation in tlic effective theory at. the sfxlr A+, mC1 (11) via 
a. purely cla.ssical calculation within the effective theory at the scnlr bA+ . The 
qua.ntum corrections that are included in t,his wq art: those gc-:nemtrd by the 
fwipling hetwern thr “srnii-fast.” gluoiis wit.11 p+ i~~oiiif3it.a in the st,rip (3.12) ancl 
the “soft” gluons Silf with momenta ]p+[ 1: /)A+. TO t,lre afuracy of interest, 

it is &ficient to consider thr eikonal coupling cY.-I;cS~J~~ tc.1 the plus component 
J.J(r = Sj, of the colour current of t,lie srmi-f;lst. qlu~s. Indeed, these gluc~ns 
are relatively f&t moving in the .l ’ dirf?ctioIl, SO d& is thf’ kir#’ cf~Im~milelit of 

their current. 
The results of t.he l~lNt.ClliIlg can be sunlnmizef:l as follows: 
i) To (3(aS h(1/6)j, the induced corr&tions of the traiisvrrsr fields =1:, (see 
eq. (3.14) for an example) fal br all relatrd t.o the ff-&~wiq l-point. and 2- 
point functions of bjj (with AT = ln( l/b)) : 

where, as in eq. (3.1-C), (. . .),, denotes the average over semi-fast quantum fluc- 
tuations in the background of the t.ree-level sourctl p. 

Thus the quantunl evolution consists in adding new c:orr&tions cr and y to p. 
ii) These new correlat.ions can he incluclccl in t,llca u+ht function II,y7 [I)] by 
i~hVi~lg t.hiS t.0 fm3lUP Wit.h T amXthlg tcJ t.hf? fOk~Willg Rc;E [%, 371 : 

We use here coinpiwt. notations where 0; f CT<, (~1)) \ ;:.fi/ E ‘\ LIh(,.r 1. , !/.L j, and 
repea.tefl colour indices (nncl ~oorclinstes) arc: i.u~f:lerst.oc~d to i)e suniiiiecl (int.e- 
gratecl) over. The notation &(.I:I) mill be explaiued l&r (ser rcl. (S.-K)). 
A complet,e proof of t,lrr statements above would require the leqgthy analysis 
of R.efs. [X7]. But assuming them t.o bc! true, it. is riI,Sv ta understand t,he 
general structure of the RGE (3.31). Incleed. nccording t,c) rqs. (3.29)-(LYO), the 
induced correhtions that we wed to t.ihke iiito af~cwulit itre (with thf? llotatiorls 



of ey. (3.15)): 

where the colour indices c. rt (t.he transverse coordinates LI, (11) irr t,hr last line 
are to he sumned (integrated) over. After a few iutegrations by parts w.r.t. 0, 
the last expression can be recast illto the form: 

(3.33) 

with aTI;[p] given by the finite-difference version of e~1. (3.31). 
In eqs. (3.32)-(3.33), we have considered only correlators of tulo-dinlensional 
(or “int:egrat.ed”) charge densities, like 

and similarly ci&, (.‘.I). This is in ugrernlent with eqs. (3.29 j-(3.30), which show 
that. only such intfymtrfi (over :r:- ) c~itailtiun corrections art” lY+Viillt~ tu tllr or- 
der of interest:, and is moreover physimlly intuibive: The soft. gluons (kf 5 bA.+ j 
to which applies the &?ctive theory a.rp uml-)lc: to tliscrimimtr the intr-mnl lon- 
git~udina.1 structure of tJleir .sources, which tare 1c.mlizrc.l ill .I’- over relnhivcly 
short distaiiccs << 1 /BA +. lxx:ause of tlleir largc~ 11~ mc)nlent;a. Alt.l~ougl~ es- 
sentially correct. this argument is a lit.t.le too siniplistit its s11cm1 1’J’ t.11r i&t. 
t,liat. seine of the qilantitirs rnrounterecl hrforr (61’t‘ in fact sensit,ive to t.hr lon- 
gitudinal structure of p (i.e., they nre not simply functionals of the integrated 
charge density (3.34)). A generic example is the bnckground field A’ [o]. or any 
other quantity built with the Wilson lines (2.38) Or (2.35). Such quantities are 
sensitive to the x- dependence of p because of the path-ordering of the Wilson 
lines in .r:-. The ordering is important since colour matrices rj(.r-) = /j,, (.~*-)r~ 
Wt tlifferent. values of .r- &I 1lCJt rc’~rIlmilte With f!adl Ch!r. This siy$‘g&s blat 

the correct way t.0 think of an “integixtecl” version of the liadroti (over CC j is 
in terms of Wilson lines - which ta.ke into a.ccc.mnt the cc.~lour precessic.m in the 
colour field of the hndron, with the proper ordering of colour lnatrices -, and 
riot of ‘L-dillle1lsiC~1li.~l charge densities like (3.34). This will I-W cc-mfirinrc-1 by t,lie 
subsequent analysis (of the quaihil~ corrections. 

3.4.1 The yuarlturrl dour sow-ce 



(3.37) 

mliere it is undcwtood that only t.hc: soft. rr~odc~ with k+ :, bA+ arv lwpt, in tile 
products of fields. 
The expausiou (3.35) corresponds to a me-loop aI)prc.)silllat,ic)ll for the mft car- 
relation functions like (LA’),, iIIlC1 (CSAid=l~r),, (cf. q. (3.1-l) j, hut wliere the 
propagator iCYL’(.l:. y!/) = (T& (.c)G” (!I))&, c.)f tlir semi-fast gluons running along 
t.lie loop is computed in the l:~ackground of t,lle tree-lrwl field A’ [/)I, l)y iwerting 
the differential operator in eq. (3.X). 

Figure 17: Some typical Feynman diagrams for \ and cr. The interm mwp 
lines me propa.gators of the semi-fast. glums; tlir ext.erml rlotted lines carry soft 
momenta., and couple to the fields h-4-. (;Lj A contribution to y. The external 
blobs denote inserticms of the elect;ric tielcl 3’+’ : the irlt.ernal line with it hlol.) 
denotes tlie lx&yxmid field prqxkgator. (I>) A (.oiitribut,iorl to (r t,o linear order 
in /I. The ccmtinuous liue represent,s the murce 11. 

To gairl some more intuition, we we ii.s nrl esaniplc the c~c.lnt,ributir,rlsit:ii)Ii~ t,o CS[;~ 
coming from tlie Yang-RIills piece of tlic xtion, S~~~~ = ,[ ~i~.r(-F;4,,/-1) : 

%(.I.)IY,jl = 2gf”“c3~“(.~)c,:.(.r:) + sf”“‘(i)+(7;;(.1))(1:.(.1.). (3.38) 

The first t.erm in the r.ll.s., mllicll is linenr in ai, is the only me to contribute 
t.0 y7 rq. (3.3(l), to lwtliiig order in n,. It gene&w t lie he-like clingrain in 



Fig. 17~1, where the internal line with ~1. 1:1101~ rrpresent,s t,lle l~aclqround field 
propagator G’J (.r. ~1) of the semi-f&t gluons. E’lysicall:,-, Fig. 17.;1. describes t,he 
emission of an cm-shell (or “rea.1)‘) semi-fast gllltsn 1-y the (‘li.tPSiCid source. 
Since (dj = 0, it, is only the seco~~d. cluaclrstic trrm in the r.1l.s. of c-q. (3.38) 

which contributes to cr, eq. (3.2!)). In Fig. 17.11 we show sl~h ;I c-ont,ribl.ltioIr of 
lowest. order in 0. (This involves nlso ver&es from the Wilson linr piece of the 

X~iOIl, ecp. (3.10)-(3.11) .) ~~)bvkILIs~~r-. this rt?prWWts 21 Wh?x ~cJrr?CtiOIl t0 the 

tree-level emission in Fig. 1O.a. 
The structures illustmted by Figs. 17.a and 1~ are generic: y is the “red” corrw- 
tion, whose itemtion generates the glumi cawatlrs: TT is t.lir “virtual” corwction, 
which provides one-loop cmrectioiis to the emission vertices in these ~s~;rtles. 
Both 2 and CT include t,errns non-linear in p which desrrihr interacticms a1r~o11g 

gluons at. differerit rapidities in clifFercnt cascades. In general, rral ;uid virtual 
corrections are relatret:l by gauge symmetry, ancl this is nlso tlir case fi)r y md 

cr, as we shall discuss later. 
The diagrams contributing to (r and 1 in the genrral casc~, t,ogrther with their 
explicit evaluation, cm be found ill Ref. [37]. Here. we sl~all present only the 
tinal results of this calculation. 

3.4.2 The induced colour source and field 

For t.hc rcasom explained in EM. 2.3, it. is nlcm mnvcmient to wr~rl; with the 
colour source fin in the co~rriclrrt gnnge. Thr c*rmymntlillg weight. function 
11; [/7] obeys an evolmion equatioii similar to (3.3 1) , lmt with irroditiecl coefE- 
Gents 6 ancl p. which are obtainecl from the LC!-gauge m4Ecieiit.s (r ailcl \: via 
the gauge rotation (2.36). III wl1a.t follows, wvc shall give directly the final resuhs 
for these COV-gauge qnmtities. 
Consiclcr first the intl~ceti .SOU~ CFp” = (t!/ilf),15 t.1.M is, t.lie c.c)rrecticm to the 
average colour charge density geiler;,~t.etl L,v t.lie polcuiznt.icm of the srmi-f&t, 
gluoris. After rut&km to the CUV-gauge, t.liis rr;& [37] : 

S&, (.Fj = I;:~(.I.-)(--~I/,(.,.~)). (X3!)) 

where the “form factor” 

F[\(.r-) E fqr- ) c 

-rlJh.c- fd,-‘As~ 

.r- 

(3.40) 

specifies the longitudinal profile of Irp,, while (l;! E I-t(.l.l), cf. rq. (2.15)) 

mntains t,he clepmclence upon the background field a, (via the Wilann lines 1,’ 
and T/t), toget.her with the transverse and colour structllre of (Ifill. By comparing 
eqs. (3.39) aiul (2.33). we drcl~cr that F(.r-)~P(.rl ) is t.he i.r~(k:t:~I field in the 
C’OV-gauge. i.e.. t,lic c~uant.uni correction to the t.rrr-level fielcl 0,. Since: 



cqs. (3.29) and (3.31)) irnmediat.ely imply : 

(7,, (.l’i) r --i7~l/&~). 

Thi’s is the coefficierlt of the virtual term in the RGE for H;[j]. 

(:3.-u) 

But the longitudina.1 structure of dfi,, is also interesting. Eq. (3.X) shows t,hat 
the induced source and field 1ia.w t,ylkdly support at” 

l/A + 5, ,,:- c- ri l/(W). (:LLL) 

Recall that. ii/7, 11~ l~erl geueriited by integrating out c~II;.I~R.u~~ fluct~uat~ions in 
the strip bfl+ < Ip+I < A +. Thus. when integrating out qumtum ,~luons in 
layers of p+. one builds the cla~ssical source p (or field (1) iii lqws of .I’-. with 
R one-to-cm correspondence betwwn t.hc .I‘- mmlin;rt~c~ of a given layer i.Uld 
the p+ niwieiita of the modes that liiw l~~ii iiltegratrtl out t.0 generat.e that. 
layer. By induction. we drcluce that lo, (2) (,s t.hr cdolu sourw generated I-y t.hcl 
quantum evolution clown t,o A+) has support at 0 5 .I‘- 2 l/h+, as anticipated 
in Sect,. 2. This a.llows us t,o consider only positive vnluf>s fbr .I - in what. follows. 
To exploit this tight c(lrresF)ollcleIlce betwell I)+ and .I‘-. it, is eoiivenient to use 
the spce-tinw mpiditp y. 

F’ E! 111(.r:-/.r:,), .r’; E l/P’ . -,x ‘.:: y ( ,x1 ( 

to indicate the longitudinnl coordinate of a field. S’i% sldl set,. e.g.. 

(3245) 

and similarly for the other fields (i,. a, etc.). The previolts discussion on the 
longitudinal structure Cil.ll then be suninia.rizecl as follows: 

The source ,L$! (~1) generated by die quant,uin evolution from r’ = () ul:, to T 

has support a.t y in the int,crval 0 <: v < 7. When new quantum rnocies. with - ., - 
rapiclities T’ iii the interval T < T’ -r: T + AT, are irit.egritt,rd out,. the prrw.ist,ing 
dour source at. v < 7 is wt. clianged, but some new c:c.)rlt.ril)ilt,ioli is ~.ltlecl to Y - 
it, in t.he rapidity bin 7 < y < T +‘L?!tT. Because of t.lwt., ATI,- I II’, +.A~ - 11; 
involves only the clmnge in py within t,lia.t last. hiii. In the continuum limit, 
A7 ---f 0, this generates the fuiictivnal cleris~atiws of Ii; with respect to ~5 at 
y = 7, as shown in eq. (3.31). This clarifies the longitudinul strwtwe of t.he 
R.GE. 
Consiclcr also the tra.nswrsr and dour structure of the inclucrrl field (3.41). 
This can be understood by reference tlo Fig. 17.1:). The transverse kernel in 
q. (3.41) has been generated as: 



where (COI~~;IR with eels. (2.34 j imd (2.53 j) 

3.4.3 The RGE in the m-representation 

Eq. (3.43) suggests that it may be technically simpler ar~cl 1Jlysically uwe trms- 
parent to work directly wit.11 the classical field cu, iiIld tAe c~uantunl corrections 
to it. (like v,), rather t,hnn with t.he calour source /j(, a11c1 the corresponding 
corrections (like Z,). This point of view is also supported by the fact t#hat the 
LC!-gauge field iUld the rrlat.ed obswvahlw xe primxily reMed to cl ,, (cf. S&s. 
2.2 md 2.3). and remIxessing them in terms of /? - with the help of rq. (2.3‘4) 
- would int~roduce il dependence upon the unphysical infrared c:ut,oif p. 
For these reascms, we prefer t,o mm-k in t.hr n-lr%lrt’.sflltclt,ia71, in which obeerv- 
;tblrs are expressed in t,ernis of a . and the a.vrragc is performed wit% the weight 
function IVT [a] = TI; [/7 = --Ct CP]. This satisfies thr following ICGE. which is 
obtained after B hmge of variables in ccl. (3.31) : 

The trmsverse and colr~ur st.ructure of 71 hve the silllle IJ;rttrrrx its tliscussrd 
after ccl. (3.53) in cxmnectioii with 11. 
The r.h.s. of eq. (3.49) involves functional derivatives w.r.t,. the wluur field 
CY:(.~L) at the end point y = 7. WWI~ applircl to t.he coeiiificients rl ;LIIC~ I/, this 



rcyuires the correspondin, u derivatives of the Wilson lirlrs I- and I-+, that wvp 
compute nom. Not.r first that, since 0). = 0 for y :>, 7, w can rewrite 

Therefore (wit.11 n‘,.!, z S(“)(J~ - ye.)): 

A simple interpretation of t,lir four terms in eq. (3.51) fiJlows from the dual 
picture of the dipole-h&on scattering, in ml~ich the cluaut.unr evolution is put 
in the dipole wwefimcticm, and, more generally, in thta Wilsc-m line Or> WiltOILS 

throiigli which a generic GCtPrlli.Ll lxojectilc x:n+Aers off t.ll(J hadrunic target [44, 
45, 46, 47. -18, 4Y. 50, 511. (See also the lrctures rUAe.9 hy Al Mueller in this 
volume. [14] .) Recent, analyses of t&e high energy scwt.trring from this dual 
persprctive have Id t,o n wt. of coupled evnlutioii equat.ious for the rnrrelation 
functiOns of M’ilsoil lines, cJri,qilldy derived by Bditsky [44] (see i1hJ [45, so]), 
imd subsequently reformulated by Weigrrt 1471 iii it ccmrprrct may, as 8 functioiinl 
evolution equation for the geliemting fi.mdional of these rorrelatiorl fll~lcticJ~ls. 

It, turns out that TVeigert.‘s equation is equivalent. tm thr RGE (3.49) [37. 521, 
which demoustrntes the rquivaleuce het~wrru the txw drscriptions - the t.a.rget 
picture and the projectmile pictare - of the nonlinenr evMion in QClD ;It smdl 
x. We shall say more on Bditskg’s equations in se& 4.3. 

3.5 Recovering the BFKL equation 

Before studying more gmeral propcrrtics and consequences of flip KGE in t.hcr 
nest section, let us rapidly show t.hat, in the weak field (or low density) limit. this 
rqwtion reproduces the BFKL equation, as txpectecl [Xi]. E(l. (3.32) implies 
the following evolution rqmtion for t,he 2-point function ([.I/)) 7 : 

For a generic? strong, sours /I. t.hc coefic.irntt,s (r and 1 are non-linear in p to all 
orders, so the r.1i.s. of rq. (3.54) involvrs ,rr-point corre1ator.s (p(ljp(2) . /J(7))) T 

of arbitrarily Iii,& or&d” 11. But in the weak field limit:, where cr is linrnr in 
p autl 2 is quaclrati~, t.his be(:onies ;I, c~losocl equation for the 2-point. function, 
vd~ich coincides with the BFKL equation, w we s11ow nc.iw. 

Specifically. consider t.lie evolut~ion equatiorr for the following 2-point. function: 

‘“~ttcidentdly, this sl~ows that the n-point functions of p tic not fortn a ccmvettinttt~ kmsis 
t,o study tltc; non-littearit.ies in t.lte evolut~iott. By cotlt.rost.. the corrrht orb rsf t.lw \~‘ilsotr lines 
fortti a more cottvehnt sttclt a basis 14-1, 5 11. iib my sldl discuss in Set.. 1.3. 



(pcL(k:~) is t.1 le -. F ourier tmnsform of pcZ (.z.~ )), which acc-ortling to rqs. (2.16) and 
(2.54) reprssrnt,s the “uiiintegrnted glum distrihut~ion“ : 

(3.5Y) 

By insertirlg rqs. (3.57) and (3.58 j into the erolut.ion eqw~tion (3.5-l), und using 
(X55), one finally ol.~ta.ins: 

which coincides, as anticipated, with the BFKL equation [3, 41. T11e first term 
in the r.1i.s.. which here is grlleri~~td by ycO), is the WU/ BFKL kernel, while the 
second term, coming from r+“), is the correspoudinji ~Gbtrl kernel. 
Note finally that the BFKL approxilnation h:xs lxsen ott.~rined hy rspanding the 
Wilson lines t.0 lirlear order in gu”; t,llus, this is fimlally the SitIllf? ;tS tllr: lOWeSt. 
order perturlmtive expansion of the HGE. 

4 A function al Fokker-Planck equation 

We now dispose of a. powerful tool - the f~timc:tion;il KGE (3.49) - t,o construct 
the effective theory 1.y irrtrgating out qwmtunl fiuct.uutbns iii perturba~.t.iou 
theory. Eq. (X&I) has Q rich and elegant ma.tlthematicill structllre, t0 he described 
in Sects. -1.1 and 4.2. Then, in Sects. 4.3 ancl 5. we shall indic;at,e two strategies 
to make use of this equation: 
i) One cm use it to derive ordinary (i.e., riorl-functional) evolution erpiitt.ions for 
the correlation functions of interest, like WP did for the fl-point, function (pp) T 
in Sect,. 3.5. When specialized to correlation fiwA.ions of the Wilson lines, this 
st,r;ttegg leads t.o a system of ecllui.tic>us origina.lly derived hy Balitsky [-Ml. This 
will be discussed in Sect,. -1.3. 
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A dificulty with t.his approa.dl is that, it generally 1~1.~1s to c:o~~&tl rqwtions 
(the 2-point function is c~q~lrd to the J-point CII~, dc.). HI.) t,hat one has to 
fc~llcw siniiiltancously the evolution of infinitely many CC~l.~~li.ItLIrS. Still, some 
progress has 1w.e.n clone. by using f~mctionnl t,ecliniques [5Y], aid, rspccially, by 
recognizing that, in the large N,: limit, a closed equation cii,Il be mritt.en for the 
2-p& function: this is the IGx~clrcgov equat.ion [45]. 
ii) One can tr,v and solw directly the functional RGE. with q~propriate initial 
conditions. An exact but formal solution can be writtell in t,he form of $1. path 
integral [52]. This is well suited for lattice simulations in 2-1-l dimensions. But 
approximate analytic solut~ions, which allow for a mow direct pliysicnl insight, 
have ?xen found as well [lo. 571. These solutions will be tlrsrril-x+:1 in Sect. 5. 

4.1 General properties and consequences of the RGE 

lCTe start with a sunmary of the most, important propert,ies of the R GE (3.4!1). 
i) The coefficients 11 and v are real quantities. Moreover7 71 is sym- 
metric: 770t,(zrl, VA) = Q~(L/~, xl), and positive semi-definite. 
ii) The RGE preserves the normalization of the weight, function: 

Indeed. t.lie r.1l.s. of eq. (3.19) is ;I total cleriv:it.ive with respect. t.0 II. Tl~us, if 
“(1. (4.1) is satisfied by the initial condition at. TO, it. renkls t,rue at i1114’ T ;% ~1). 
F’roperties (i) and (ii) guarantee tJ1a.t. the solution H;[,-] to t:lle RGE 1~:: i.1 
meaningful probabilistic interpretation (cf. the discussion prior to rcl. (2.-l)). 
iii) The momentum rapidity T and the space-time rapidity y are iden- 
tified by the quantum evolution. That is, the field (1, in the ra.pirlity bin 
(y, v + tly) is generated 1.)~’ the quantum ewlr,lut.ion from 7- = p up t.0 7 = y + cl’y. .‘ 
This follbws from t.lle discussion in Sect. X4.2, ant1 implies t,llat, t.ht: bo rapidi- 
ties can he treated as only one variable. the kwl~~tioii t,ime”. 
Wit,h this interpretation, the function { ~$(.rl) 1 - w c-: y <*’ xl} - which ~)Irys- 
icsllp represents the longitudinal profile ‘.of t.lre 3-dinirnsiona1 field a” (.r- . .I’_L) 
in units of rapidity (cf. ccl. (3.46)) - is viewed as a fruqjwtorq in the funct:ionit.l 
space sparued by the 2-dimensional fields (2” (x1 j. Quantum erolution then 
qjpears as the prcJgrcssh1 of the “[kit” (1 a(~t.l) &ng t,lris tr;t,jrctory Tints, 
eq. (3.49) desrribes rffectiwly a fielcl theory in 2+1 dimensic~ils (the transverse 
coordina.tes and the “rwlution t,iine” ). which is licwrver 7~1r~-lwtrl in lx&h .rl 
and y (since the coefficients (3.41) and (3.51) uf the HGE inr-olw (1, at, all the 
‘Yimes” y “: T, via t.he Wilson lines (3.52)). 
iv) The initial condition. Let, the cluantum evolution prowed from some 
original “time;’ r(l up to the wtual Yinie” 7. The “tnt,jrctory” { CI y (x L. ) ] - ,.xT! SC: 
y s< cx!} can be decnmposed iuto t,llree pieces: a) The field (ly at y 5 ro belmgs 
to t,he init.ia.1 conditions. 1:)) The field cty ;.t.t. r,) e:. y <- T is genrratetl 1-y the 
quantum evolution. c) There is no fielcl at all at. larger y o,. = 0 fbr ally y :* T. 

Thus: 

rr;[clJ = ii[ct ‘1 W&1-‘.], (d.2) 
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Moreover, it cim be showu [10! 521 that W,[rk ] 1 13s the factorized structure: 

is the Wilsorl liiie built wit.11 the iidinl field. In rcl. (4.5)) it. is underst~cml that, 

in W,, , tlic field argument cky has support at y 5 m, while in W7, Tc, it, hits 
support at 70 < y 5 7. The “propit.gi~ltOr” l/v,.,, from 7-0 to T clepends also upon 
the initial field at y < 70 I but only iii an iiitegrat.ecl way, via he Wilson lines I ij 
and I;bt . Fk0111 eq. (4.5) we deduce t11a.t. w,, T,,[U1b/;)] - 1 m11r11 7- - 7-J. 
The initial weight function W,, c r‘IIl1lOt be CJkJta.illed Within the presC?rlt fOrId- 
isIn, but rather requires soiiie model for tlrc liaclron wavefunct,ic-111 at rapidity 70. 
It. is convriiieiit to clioose a ni0drrat.e value for Tg = ln( l/s(l), e.g., so : lo-‘. 
This x,, is smdl enougll for the LLA t.o qply, but, still 1;irgr. enough for the non- 
linear effects to remaili negligible. Then one (WI LW iuitinl couclitions wllicli 
are consistent wit.11 the st;urclard, linear, evolution q~~~t~ions (cf. Sect. 5.3 he- 
low). Once a cvnvenient due for sg has lwen clmsell. CJi1r-l Cirtli dwiays red&ie 

7 E ln(x~/x) so tli& the initid condition is forluulhxl at r,l = 0. \\;itll this 
choice, the fielcl a, at positive rapiclities y 2 0 is g~qieratd by the c~uanturn 
evolution, while the field itt iiegatiw rnpiclities y <: 0 must I.J~ sprdiecl by the 
initial condition. 
v) The Hamiltonian structure of the RGE. Ey. (,3.4!)) ran be rewrittru 
RS: 

A crucial property. wit11 many WI~S~C~WUCW. is that t.lir swond term within 
the braces is actunlly zero. Incled, the following rehtion holds kt.werll tllc 
cocfficirnts of the RGE [47; 371: 

(43) 



It is easy to prove this relation by using eq. (3.53) to i.L('tn with S/n‘rkt(;!/_~ ) on 
71,b(rr~, .yl), rq. (3.51). This yielcls, e.g., 

where both t.erms in the secord line wnish l~rc~ausr. of the antisymmetry Of the 
colour group generators iii the acljoint representation (e.g.. (P),h = 0). The 
only nonmnisliiiig contribution is 

which reproduces indeed eq. (3.11) after integration over y:, since: 

With eqs. (-4.7) and (Ad), thr RGE cau 1x1 lrrou,qllt~ itltcl a Hmliltoniun form: 

with the following Hamiltonian: 

(-4.12) 

which is Hermitian (since ,q’$; is red md symmet~ric) mcl posit.ive semi-tlefinite 
(since the “current.” .Ji(zl) L is it.srlf Hermition). 
vi) The infrared and ultraviolet behaviours of the RGE. ‘I’hrse i.tr+: cleter- 
mined by the krruel ;rl”” (.r:l, ;yl) in the Hamiltonian. 111 t,he infrared limit, where 
21 is much larger than both tl arid ,qI (see eq. (X51)), K(::(-l:l, !/J_, :I) z l/z:, 
a.ncl the ensuing iiit~egral (8 :I/;$) has a 10garith~Uic infrared tlivergerrcell. 
Thus, there is potentially an IR problem in t.he RGE. This is not necessar- 
ily a real diffkulty, since IR problems are rspectecl to t-It: absent, only for the 
ga-l~yf:-invari,nnt ohserva.bles. We shall see incloed, on specific rxmrples. that 
the IR divergences cancel when the RGE is used to derive evolution equations 
for gauge-invariant clunntities. l’his cmice.llation relies in a crucid way 011 the 
property (4.8). 
Cloniing IlOW t.O the ldtEi.vi~Jl~t, or short-distance, ~Jdi~I~%w, ’ It. is ensy TV ser On 
eq. (3.51) that nc) I..lV problem is to be anticiputetl. For instmw. the w~drl-1~ 
linear pole of li:(x~+ !/I, 21) at. [z~ - .rlj -+ (1 is actually r imcelled hy t.he fador 
1 - VLjlKz which vanislies in the same limit. 



4.2 Quantum evolution as Brownian motion 

To ela.rify the prob;&ilistic interprrt.at.ion of t,ltr RGE (3.-K) ), we stnrt. by recall- 
ing the simplest. rsanrple of a stocltas~ic process. ttmtely the Browttiatt motion 
of a stttall particle in a viscous liquid attcl in the prrsetm of sottte est~erttsl force, 
like gra.vitatioa [59]. Tltr particlc is su srrtall that, it (‘iltl fwl tlte dlisiotls with 
the ntolecules in the licyicl; aft,er each such a collision, the veloeit~y of t,he pnrticlr 
changes raticlotttlg. Atic1 the liquid is so viscous that., iift (?I: melt collisicxi, the 
particle enters itntttecliat~ly :I. ronst.attt velocit~y regime in which tltr friction fbrcr 
Ix d (with .oZ the velocity of tJtr pa.rt,ic*le) is rquilibrat.ecl 1-y t.ltr rmdotu force 
due to dlisiotts t~oget.lter wit.11 the external force F’ (.I:). Itt t,ltesr conditions, the 
particle executes a rnnclont walk whose description is ttewssary statistical. The 
relevattt qmttity is tJie prol:d)ility dettsity P(.r.. t) t.o fittcl the partif:le w.t point 
.c at, time t. This is normalized as: 

.i 
8.r P(.r. f) = 1, (-u-4) 

md obeys art evolution eqtatiott of the tliffusiott t,ypet Irttowr as t.ltr Fokker- 
Plarrck equatiott [Xl] : 

(4.15) 

Here, D is be diffici(J~i coeticiettt, which is ?L tumsure of t.ltp stren@lt of thr 
ranclotn force; for simplicity. me assume this to I-w 8 consfatit,. i.r., independertt 
of .T or t. Tlte solution t,c, eq. (d.15) corrwpcdittg to sotu~- d3it.mrp ittit~ial 
crmlitiott P(:r, to) cat be written a8 

P(.r, f) = 
.i’ 

fP.r,, P(.,:, fl.(.(,> ff)) F’(.r,,, t,,), (4.16) 

where P(.t:, f].ro. to) is the solution ix0 (4.15) with thr initial mttclitioti: 

P(s, t,ll~L,, to) = fP(:r - .h)j. (1.17) 

Fliysically, this is tltr probd~ility clensit,y t,o find the ~x~rti~le at point. .r at. tiitte 
t krlowing that it xx ii.t, .[‘(I at time tn. 

If F’ = 0. tdiis soht~iim is itimiecliittely obtained I y going to tttc~tuentutt~ spac’e: 
Tltr Fourier transform P(/;. t) of P(.r:, f I) .I‘(), 0) i P(d. - x(). t) ohys t.0: 1 

witlt the ol~vious solutiott ii(li, f) = r-L’kZ t. or, fitdly. 

This shows a purely diffusive beliwiour: the prc ~~,mbilit,y t.o find tJte particle 
withit ii, fixer1 volutttr crtit.eretl at. some poittt .I’ goes Rtt100tJlly to zero 8s t - ~3.2 



for any :I: (runawa.y solution). The correlations of .I: reflwt this heh;lviour too; 
for instance: 

-2 I’ (t, E ((.L. - .r,,)‘))(t) EE 
.I 

tl”.r (J. - .r,,)‘) P(.r - J,), f) = 6Df. (4.20) 

showing that. on the average, t,hr pbiclr grt,s further and further uwtg- from 
t,he origind point. .zI:l. but. along it non-tlifferelltii~~~l~ trajectory: r’(t) 1.X v?, so 
the average velocity ii = I;(f.U)/J.t has no well-drfinrd limit when At - 0. 
This situat.ion may change. however, if the motion of the particle is biased I~J.v 

itll external force. Assume this force t.o be derived from ii. potr~nt.ial: F’ = 
-dV/&‘. Then one can check that t&e time-intlependellt, dist.ribution P~J (x) - 
exp[--JV(.7:)] %: L L. is CL 5tntionary solution tc.) rq. (4.15) provided j.in = 1.. Of course. 
thk SdU+hll is ilccf?@akJk ils il. prcJhdJility dc’iisity f.Jdy if it iS ii~Jrin~~.liZitbl~‘, 

which puts some constraints on the form of the potrntial. But assuming this to 
he the case, then Po(.r,) - e --a. represents an rquilibriuni distrikJutiOx1 which is 
(asymptotic,dly) reached ly tl ie system at large tSirries [59]. Once t.his is clone, 
it11 the correlations bec:ome inclependcnt of time (unlikr (4.20)). This solut,ion 
is 21. “fixrd point” in the functional space c.~f all (acceptable) distributions. 
Returning t,o our RGE (3.4’3). it sl~ould he clear by IJ~.W that this is a functiona. 
Fokker-Plnnck ecluation which describes a ranclolu walk in the functic.Jn;d space 
of t,lie colour fields c>~‘(,~I). In t,his equation, ‘q delays t.he role of t,he ~diffusion 
coefficient” , while v is like a “force term”. altliough this idrnt3icatioii is soriiekiow 

ambiguous since 71 is itself i\ fiinctiona~ of a, so its drrivat,ives cim generate other 
0 Jntributions t.0 t,lle force Wrm, a.s shown in q. (4.7). (111 thr analog;ous problem 
of t.he Brownian motion, this would correspontl to n difbsion c( ,r&i&nt, which 
ctepends on :c and has n trnsorial structure: D + D,., (x). This situation c)ccurs, 
e.g., in the description of a random walk on ;a curved manifold [Xl] .) In f;lct, 
it. is more correct to identify t,lirb combination +(‘Sq/Jn.) - I/ as tht effective 
“force term” , since the r6maiiiiiig second-or&r differential operator in eci. (4.7) 
- which describes diffusion - is then Hermitian ilntl posit.ive semi-definitr. 
A fbyed point of the quantum evolut,ion would 1.)~ a solution I~‘[o] to ec.1. (3.49) 
wllicll is normalizal)le and independent of %ne” ‘T. If sucli il. solution exibd, 
then the high energv limit of QCD scattering wo~c,uld hr trivial (at leitst. within 
t:he present Ell’pro~xinl;ztions) : At suficiently high energies. all the cross sections 
woulcl becomr independent. of energy (reca.11 hllrrt T k In 8). Thr relation (4.8) 
bet.ween the coefficients ill the H GE guarantees, however, that. such $1. “fixed 
point” does not rxist: The effective force in eq. (4.7) viuiislies. and the corre- 
spending rvolution Hamiltonian (4.13 j is just a. kinetic oprrntor, which clescrihrs 
pure diffusion. Wc thus rxprct gluon corrrlat~ions t.o keel) growing with 7 k 111 s 
even at asymptotically lirrgr energies. In Src:t~. 5, Wf? Sllilll fid npprc)xirn;ttr 
solutions to eq. (4.12) which S~KW indeed such ?L. brha~iour [ lU/ . 



4.3 The Balitsky-Kovchegov equation 

If (O[ik] )T is any ol~srrwble mllidi ~ihn be cc.mp~lWd as it.11 aWmge over ck : 

(cl[n] )T = 
.I 

D[o] O[(l] TT;[tr], (J.21) 

(cf. 6x1. (2.41)). thrn its rvcd~~ticm with 7 is gr~rernrcl 1-y t.he fdlm4ng rqii;~tiou: 

where, in writing the ~e~oncl line3 we hnvr used rrl. (-1.12) fW i:jWVr/ilT Uld then 
irltegratecl twice by parts within the functiond integral ovrr a. 
Let. 11s q)pl;y this to the 2-point fimction (2.26 ) of t.he Wilson liues in the fl.lllda- 

rnent:il representation. We recall that, physically, this is t.he S-rrmtris denlent 
for dipole-lmdron scattering (cf. Sect,. 2.2.2). A str;~iglitfbrwnrtl cdxdaticm 
yields (see [X7] for Cletitik): 

x (NC.!;.tr(l$l’,,) - t,r(T‘;tT,)t.r(l’;i~;,)jT. (1.23) 
This is the equat.ion cx+ginally obtained by Bditsky [J-C], within a cpitr different 
formalism : by an amlysis of the cpntum evolution of the dipole itself. 
Not that the above tquatic.m is not closrd: It relates thr 2-point function to 
tile J-point. filiicticm (tr(L;l J.‘L&r( Il,t I;,)). Olle can sindxly derive ill1 clvolution 
ecpiaticm for the latter [-44], but, this will ii1 t.urn c~llplr the 4-Ix)intL function to 
a (j-point furdion, ancl SO on. That. is, ccl. (-1.23) is ,just. the first. in au infinite 
hierardly of coupled equations [A!]. 

x {.sT(.rl, !I~) - &(.I.~, ;I jST(rL? !I~)}. (4.24) 
The same equnt,ion has been iuclepenclently ol:~taird by I<( ~chcypv [G] withiu 
Mueller’s dipole model [46, l-i]. (See also Ref. [SO] f : ‘(jr anotlielt derivation .) 
An important observation refers to the t,rnnswrse kernel iii ecjs. (4.23) c)r (4.24): 
This is not, t.he sanle as t.he original krrrlel Ji:(.l:l, !/l, 31). ~1. (All), of the RC:E. 
Rather, this has been geileratcd as 



There is currently a large-: interest in the solut.ions to eq. (,4.2-l), :.md signifiwnt 
progress has hem ;~&ieved 1:)s coinLining a.na.lyt.ic and mimrric;J methods [ 19, 
45, 50, 54, 55, 581. The conclusions renchc~d in this ~~1) r -7 are rquivnleiit. t.0 those 
obtained from direct investigntions of the RGE (3.4!)) [lo. 571 t.llnt we shall 
review in what follows. 

5 Approximate solutions to 
the Renormalization Group Equation 

We shall nom construct. approxima.te solutiolrs to the KGE (4.12 j Mltl study 

their physical implications [ 10, 571. 

5.1 The mean field approximation 

As compe.rcd to the standarc diffusion rclnation (4.15), the main c~r.,lllplic;.lt,ion 
with the RGE (4.12) comes from t:he fi& that. its kernel 71 is it.self dependent. 
011 a. In this respect, eq. (4.12) is similar to the followirig cliffusiou cqiwtion: 

(5.1) 

in which t,he diffusivities .Dij (I:) are allowed t,o depend iipori t,lie position :I: of 
t,he particle. This dependence makes eq. (5.1) clifficillt. to solve in general (i.e., 
for some arbitrary tensor field D,, (.I.)). But since .I’ is a ra.ndom triable, with 
probability density I-‘( .I’, f), it reasonable itI~prosimat,ion is okCned by repl;u:irig 
Dij (.r) in ccl. (5.r) b;v it.s exl)ectation valve: 

I. 

D,,, (.r) - (Dij(aT))(f) E] tt3.r:P’(.r,f) D,,(.I.) E d,,D(f)t (5.2) 

which is independent of s, hut a function of time. We denote with a bar quanti- 
ties evaluated in this “mean field approximation” (ILIF%.). In particular, P(.z:, t) 
is itself related to D(f). as t,he solution to the following approximate equat~ion: 

l3ly.r.. f) 
nt 

= D(f)& P(.r, f) 
. , 

Thus, eq. (5.2 j is actunlly a sr!f-cnnsist~nt eqwkiorl fbr D(f). Beiug homoge- 
~iwus in X, eq. (5.3) is exsily solvf~d by Fourier t.LilIlSfOIXl, ils in eqs. (4.18)-(Ll!)). 
For the initial condition P(.r.. t = 0) = fiC3)(z). onp. thus obtains: 
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By irlsert,ing this solution in eq. (5.2), one can conqn~tr the itveri\ge there (il,s 
a functional of d(t)). and then solve t,he self-wllsiste~it ecpation for D(t), thus 
cornplet,ely specifying t,lte approximate soliltion (5.4). 
This is the strat,egy that, we shall use t.o ohin a.pproxirnat.e solutions t,o the 

( :, .5 ‘1 

(5.6) 

where the! trivial colour structure in tht! 1.li.s. follows from fii?,LlgC? symmetry. By 
t,lrc same argument, ~v”(:~_L))~ = 0. which is indeed consistent with tllr MFI 
(5.6) for rf and the condition (4.8). 
Eq. (5.5) is homogeneous in the funct~ional \nrinble LY~(I. 1. ) (since its lcerrrel 3T is 
independent of a), SC) it fan be solved by functional Fourier malysis. This is the 
straiglitforward ext~eiision of the corresponding malysis for orclinary fiuictions, 
and cm bc more rigomously introduced by losing a discrrtizecl version of tlw 
3-dimensional configuration sl>i.tce (y, .(.I), as in cqs. (2.5) or (L-C). 1%‘~ writ.e: 

(5.7) 

(5.8) 

one obta.ins the following equa.tioii for Li; [ 7r] (compare to tq. (d. 18) ): 

(5.9) 
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. 

with S[cr’“] defined in ccl. (-LL) (this has kwetl geiwratd by t,llr fLlM~tiOlli.11 integral 
ww 7ry wit.11 y > T) a.nd 

In this equation. WC, [cl] is the originnl weight funct,ion at T = 0, and is iL func- 
tiond of t,lie field ~7~ wit,11 y 5 I). (.A& is nn irrelevant, nurnialization factor.) 
The solution (5.11) (5.12j has the general struct.ure anticipst.ecl in eels. (4.2). 
(4.5). If the initial conditions are dexritwl by tlw RIV model, or any other 
MFA, then W~,[tr] is n Gaussian t,oo (see. e.g., eq. (2.52)), i:llld ccl. (5.12) cali ])r 
rewritten ~3s: 

For y 2 0, the w&h ?- is specified by the initial conditions, while nt positive 
rapidities 0 < y < YI-, it is determined by t,lie cluantutn evc:~liition, as we shall set”. 
The fa.ct that the wright funct.ion (5.13) is a Gaussian clc ws not. necessarily mean 
that the present a.pl?rc.)siiii;ttion tleic~ribes a syst,eni of intlrpentlrnt colour sources 
(like the MV model). It just means that, in the MFA, all the corrrktticw are 
encoded in the midtli of the Gaussian, or, er~uivalent~ly. in the Spoint function 

(q:r_L) tr;&Jj7 = ri”“cS(y - y’)H(r - y) ,-)y(.Cl. !/I). (Ll-rj 

But this 2-point function contains also information on the higher-point. cor- 
relations, alt,hougli ,jllst in it11 ;IVelXgd way, 1:)ecull.W it is tlrtrrmined 1:ly the 
following, n.on.-linenr; self-consistwxy equation: 

(5.15) 

x. 

which follows from cqs. (5.6) ar~l (3.51) t:cJgether with thrs fact thaf, for i.t Chus- 

sian weight fi.uictionl”, 

with -S; a (non-linear) f~uictionnl of +, to be constructwl short,ly. 
The correlation function (5.14j is local in y : cwloiir sources 1ocat:ed at, clif- 
ferent space-t,ime rapiditirs appear to be st~at.isticallg indepencleut. This is. of 
course, just a.11 artifact of the MFA. The complete KGE grnera.tes currela.tions 
in rapidity, via t,he Wilson lines in it,s cuefiicients. But the only trace of thcsc 
correla.tions in the MFA is t.he frwt that the self-collsist~~rrc~ ecluation (5.15) is 
non-local in y. 
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(The functional derivatives of t,lie Wilson lines have hreil rwluatet:l ii.8 

x l-/- &((.rI. - !/I) - &(.r._L - LI) - *S7(;1 - !/JJ , 
1 

wit,11 ,s’,(rl) = ~-3-Y”~v~~1Er(0~ 1-67 cr.L )I . A s anticipnt.ed, this rquot.ion is highly non 
linea~r in ET. It. is furthermore non-loca.1 in the transvrrse coordiiiat,es, but local 
in be “evolution time” 7. (The origirra.1 non-locality of eq. (5.15) in y 1~s l-wm 
now absorbed in t,lle relation (5.2CJ) betwren JT and ?y .) 
In the next sections, we shall tlwelop further appr”“inrat.ions. which rely (III the 
kinen&ics il.Iltl allow us to n&ie progress wit.11 eq. (5.22). 



5.2 Saturation scale and Kinematical Approximations 

Both the non-local and the III m-linear st~rudmr of the ewlution equation (5.22) 
depend crucially upon t.he belrnviour of 5’: (~1) wit.11 the transverse separation 
1’1. From it.s definition (5.16). it is clear tSh:tt. ST (1.1) + 1 us 1‘1 - (3 for any 
T. iUoreover, since a large dipole is st.rongly aJ)sorbecl by rr liaclronic target., 
we expect that S,(rl) @: 1 for sufficiently large 1.1, where what we mean by 
“sufficiently large” will generally depend on 7. For instance, we have see11 in 
Sect. 2.5, within the MV model, that Sr(r~) CC 1 frti,r r’~ ;.> l/QA. with Qs the 
satguati.o7~ scu.le for gluons in the liadron wnvefimction (cf. cy. (2.76)). In that 
classical model, QS was independent of energy. but in general we expect it to 
increase with 7, because of the c~uantum evolution (cf. the discussion in Sect. 
1.4 ad Sect. 5.3 below). At. a formal level. this intimate connection b&men 
the strong &sorbtion limit for a c&iir dipole and ~luoii snturation is based on 
the fact that. in hot11 problems. the non-linear effects ilre rncc~cled in Wilson 
lines. So, let. us iIltr~Jfdl.l~Y t.lir correlation length l/Q,% (7) of $(f.l) : 

(5.23) 

which, as its notation suggests, mill play also the role of the Sittl.IIXtic~~Il scnlr. 
This beliaviour of s, (rl), with an unique srpnr;~tion XL& betmem it ShcJrt-r~lllge 

regime arid a. long-range one, is confirmecl by numerical stuclies of t,lir Ko~chegov 
equation, which also show it rq)id increase of Qs wit,li 7- [19, 511. 54, 581. 
Eq. (5.23), together with t-lie expression (5.1!-J) for S, (/.I) in the iUFA, imply 
t.lle fO&JWiiig CCuiditicJll: 

t.1la.t we shall use litter t.0 obtain an estimwt.e for Q,$ (T j. 
An external probe with transverse momentum kl will mraure corr&rt.ions in 
t,lie hadron over a t.ypiWl transverse size I’_L -- l//cl. Tlms, short, clistanc*rs 1.1 4: 
l/QI; (7) correspond to high moments. k~ -2% Q6 (7). while large separations 
7’1 > l/QS(~) correspond to low momenta kl <g f&.(7). 111 what follows. we 
shall not aim at a precise description of the physic:: around the saturation scale, 
but rather focus on tlic two limiting regimes -- lii+I;~ arrcl low-kl - nucl 
perform appropriate simplifica.tions on the evolution equo.tiori (5.22). 

Cl I E$h -Ii: 1 . It. is convenient. to rewrite eq. (5.1!,) in inonientiini spase iis: 
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the exponerkid in (5.25) in powers of p1 . 1‘1, like iii eq. (2.GJ ), and thus obtain: 

i5.2ci) 

x (.r_L - !/J - (.l.i ;I 
( 

T~IIIS, the slrort,-distallce approxirnntion is ;~ut.omaticnlly R linear. (:~r weilk-field. 
approxirni~tion. This is to be expected sinw, at. liicfli 1~1, the ~gk10ii tknsity is 
low. 
To perform the integral wer 31 in eq. (5.29), it is useful to recall ~1. (3.48) mcl 
then notice t.liaL within the iiitegraricl of (5.2!1), me cim t4kctively rrplucr: 

(Tlie at:lclitioni~.l terms in the r.11.6. ibrc’ &fl.lll~~ti~Jlls it!. ,:I = ,I‘1 Or -1 = !/I, 

mllicli wnish when multipliecl by the rrmaining factor iii (5.X)). ) l3,y using t.lris, 
t,ogetlier with a couple of integrations 1-y parts w.r.t,. ZI , and a Fourier transform 
to inonientuui spaw, we finally oldnin the folloming w01uti0u equation: 

(5.30) 



which, physically, is the 2-point, function of thr CdolU cliurge c-lcnsity in the 
tr;msverse plarie p” (so ) : 

The initial condition for eq. (5.30) cm lx t&e11 from t,he NV model: p,(kl ) = 
p,\ for Y- = 0, cf. ccl. (2.51 j. This initial wntlition is independent. of ITI ad. 
top#wr with ey. (5.X1), it implies tlli1.t p+(kl j remain. c: 8 rather slomly virryiiil?; 
fi.uiction of X:1 in this high momentum regime. This will he manifest on the 
solut~ions to eq. (5.30) that me shall write in the nest. subsection. 

b) Low-l;; . For large distances rl > l/Q,T(r). & (rA) +:I 1, i:l.Ud tlw 2-point 
functions of the Wilson lines ci.tn he simply neglectd in the self-consistcnc!I 
c~quations (5.15) or (5.22) [lo, 571. Eq. (5.22) then simplifies to (see also 

or in momentum space (cf. rq. (5.20) j: 

Izd 

(5.33) 

(5.34) 

This is not nrr ecpation ;tnylonger, but rntlwr a11 rsplicit, nnd r~~.ther simple, ex- 
pression for the propagilt.Or -i7 (/iA ) of idle fields 0 : this is just, the 2-tlimensional 
Clc~nlomb propa~gator. 
Remarkably. the QC!D coupling constant g has dropped out from eels. (5.33) 
and (5.34). (This should be wntr;kd with the wrrrsponcling equation irt. high 
kl, eq. (5.21)). whose r.1i.s. is explicitly ~Jr~.~~m’tbIla~l to CL,? = $/Jir.) The SRllle 

property holds then for the corresponding mean-field Ha.miltonian (cf. rq. (5.5) ): 

which is quite renra.rkablc since at low X:J_ WC ixre effectively in it strong coupling 
regime (in the sense that tlir COV-i-gauge fields are strong: 0” .v l/g ; sfv Sert.. 

5.4). If y newrtheless drops out. in this limit, it. is kcxiusr. of the speck1 way it 
enters the evolution Hamiltonisn: ‘i’iiL the exponent of the ‘i’c’ikon linrs. That. 
is. the relevant tlrgrees of fkrclom in the non-linear regime art’ not the (strong) 
colour fielcls by themdws, 1.d ratlier tlit- Wilson lines ~~uilt~ with t,hese fields. 
The Wilson lines 8re r;tpidly oscillating over distances 1’~ ;$a l/Q,?( 7-T) (since 
their exponent is of order one. i.l.lltl tllr tppicd scdr far viKiilt.iOrls is l/Q,>(T) ) , 
itlld t.llus average to zero ( “random phase aI)~)rvxilllatiu~l” ). 



For what follows, it is useful to summarize the previous kinematical approxima- 
tions into the following;, factorized, form for thr weight function (5.13), which 
is most convenieritly writ.trrr 3s a weight func%ion for I” & (kl) = kf nF(kl) : 

In writing this equation, me huve sepnmted, for eac*h rapidity p, the lots-morrreIlt~lm 
(kl < Q.?(y)) modes of 11 from die high-rnomrntun1 (1;~ ::+ Q,?(y)) ones. we 
ha.ve used the n.ppr(.)sinlat,ion (5.34) for the width of tht: Gallssian at low 11Ic1- 
menta, arid we have written X,(~_L j 3 i‘)py(lil)/ijy, with /iT( /Cl) tletrrrninecl by 
eq. (5.30). at high momenta.. Note that the modes wit.11 k_~ - Qs(y) iire llot 
cc-~rr~ctly described by the present. aI-,prosimations, lmt wr shall itsslum t.hat. 
they give ody small cmtri1dAons t.o the clu;ultiticts to be conlplltecl brlom. 

5.3 High-k1 : Recovering the perturbative evolution 

We now consider the implications of eqs. (5.30) iLIld (5.38 j for the physics at high 
trmsverse momenta X.1 > Qs(~). T 0 tl iis aim, mr compute the gluorr density 
(2.23) in this low density regime, where one ~a.11 use t.he linear approximst~ion 
j”+j(C) N (ikJ/k;)p(Z). Tl ie calculat~ion is similar to that i.l,l?Y;td~ performed iri 
rqs. (2.53)-(2.55). Specifically, by using (cf. eq. (,5.38)) : 

Note the lower limit. Q,(r) in the integral giving sG(x, 0’) : for 12’ 2:. (J:(T), 
and to lcxling transverse-log a.ccuracy it is sufficient to cmsicler thr contribu- 
t&ii of the high-kl modes of /.j t.0 the gluotl t:listribut,iou. \!‘e sha.11 check la.ter 
t.h;tt the correspondirlg contribution of the modes with kl ,g Q4(7) is infrared 

l”Tllis is the dour chrge densitv in t,lw C’OV-gauge. ht. we c-wit. the tilde svmbol 0x1 p. 
to simplify writing. 
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finite. altliough subleading a.s compared to rq. (5.41) [lo, 571. This cures the 
infrared problem that we lia~e faced in the classical ca.lculat,ion uf Sects. U-2.5. 
Plrysjcally. /In plays the same role as Il.4 in the nlV n~odel: It. measures 
the density of the colour sources in the t,ransverse pla.nc, and, in t.lie linear 
regime at high-kl, it is also proportional to the iuiint.egra.ted gluon distribu- 
tion: I-~.~(Q~) ix. i) xG(x, @)/ii, ln Q”. But, unlike /lit, which js constant for a. 
given atomic number A. /I, (/iI) has non-trivial dependences upon 110th 7 and 
kl, as determined by its quantum evolution according to rq. (5.30). The cle- 
penclence on 7 describes the increase in the density of the coloiir sources via 
soft gluon radiation. The depmdence on k~- corresponds in coordinate SI);IW to 
correla.tions in the transverse plane, which occur via 1-llr rxcliangr of qu;mtum 
gluons (see Fig. 17.~). 
Eq. (5.30) -c. t c9n je recognized as the standard. linear rvolution fquat ion in t,he 
dollblr-logaritlllllic Rp1-‘roxinlatioll (DLA) [5]. . i e in the limit in which HFKL 
and DGLAP coincide with each &her. (In this limit, only the first. “real”, term 
must be rrtaincd in the r.h.s. of the BFKL equation (3.533; f(.jr kl .S pl, this 
t.erm reduces indeed to that in eq. (5.30).) The tlmergence of DLA is IJ&t~LlId, 

given the approxima.tions performed in deriving eq. (5.30): we have kept, only 
terms of leading-log accuracy in both 7- = ln(l/x) (in tlir ~onstruct.ion of the 
effective theory), itnd ln(kt /Q:(T)) (in the short-range expansion at. high h-1). 
Eqs. (5.30) and (5.Jl) imply thr more standard form of the DLA equation [5] : 

(5.42) 

At. large r and/or Q”, the solutioii t,o this equation ilICIYiL?X?!~ like (with CT, E 
o,~IV,.,./~~ and Qi some scale of reference) [5] 

where we llavr~ assumed (.‘ls to he independent of (2 ‘. If instead otlr tilkW t,llc: 

running of the coupling into account. by writing Q,~ (Q” ) = IJ,,/ ln( Q”/A&,,), 
then the dependence of the solution upon Q’ gets softer [5] : 

sqx. Q’) o( rxp {2/w}. (5.44) 

111 my case, eqs. (5.43) arid (5.44) show t.11nt, i.tt high transverse momenta 
Q2 >y Q;(T). the gluon distribut,ion x(:(x, Q”j grows rapidly with 7. This 
is the standard picture of parton evolution. which. if extrapolated t.o arbitrar- 
ily high energies, wc~uld predict, violaGons of the unitarity l:)oundlL. But from 
the previous analysis, we know that the ;1Irprosim;Lt,it,ns leading to eq. (5.42) 
will break clown at, sufficiently la.rge energies. wllerc’ the non-lineilr etiects in 



the Cp~.~~tU~~~ cVO~UtkJIl cn.lXKk be lleg’kt Cd i.tIJ~lCJlJQjW. Alt~eri~ativrly, for fixed 
ra.pic1it.y T, the linear approximation Breaks &mm at, low t~rnnsvrrse momenta 
k_~ << (I&(r), with Q,3(7) the satura.tion sdtl. An estima.te for this scale lms 
been given in eq. (5.2$), which, togetller with rqS. (5.31) and (5.11 ), implies: 

5.4 Low-k I : Coulomb gas and gluon saturation 

We findly turn to the most, interesting physical regime, that of the non-linear 
physics at SIllill transverse monlent;t x?~ <. Qs( 7-) (with kl % ~IQ~:~~, though), 
wliose uriclersta.ncling was in, niain nmtivatiou for ~1.11 tlw previws tlrvelopments. 
Within the effective tlwory, the lam-rlionrentlml irivdes of the dour wurw 
are described by the weight. fiinction I+$“. CT]. (5 217). ml~ic:l~ is ~c~[l.liVil.l~Iltl~ 
remrit,ten as (cf. Fig. 18): 

with ?(kl) = t.lre rapidity at5 wl~icll the sa.tmation moinentwi is rcplrrl t&o 1iJ. : 

c):(;i(l<,)) = Iii, (5.X)) 

There a.re several notrwrortlly fentures atmut eq. (5.43) : 
i) This describes a C’o-dorrrb ,9fLs. i.e., it system c.)f dour charges iriterwting yin 
long-range c’ouloml~ forces. The cduur so~me pf:(.r~) at: ;I’L feels the Chulornt~ 
field c$(z:l) creat.ed at .rl by ~111 the other sources: 
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ii) The colour charge correlations are 1ocu.l in rqitlity : t,hc: CoulonlL fmces 
couple only sources lOCi~tet:l in the SRIlle layer of y (or .r- ). At. lOW-Ii’_L, this 
property is not just au artifact, of the MFA, Lut. ruther has R tlwp physical 
meaning: In the qiimtuin evolution, the colonr SOWCW at different rapidities 
get correlated with each other lwcause of the presence of Wilson lilies in the 
evolution Hamiltoninn (4.13). But t.hrsr correlntjons are was11~cl out. on a li.i.rge 
scale 1’1 > l/QJr), on which die Wilson lilies awrnge to zero. In particuli~r, 
this explains why the width *x k$ of t.lie Gaussian (5 48) is indepcmlerlt of . 
the initial conditions at. T 2 0. (By contrast. at. high nmmerd,. the miclt,h 
X,.(x:,) = iJp,(k~)/By in eq. (5.38) is sensitivr to the init.ia.1 cwidit~icm, since 
determined 1-y solving eq. (5.30) .) 



integrated quantity 

(5.51) 

which measures the density of sources (with given 1;~) iii thr transverse plane, 
grows only lim:(~~by with T, that. is, log~trit.l~mic;~ll~ with the rnergp. This is 
to be mrrtrast~ed with tghe strong, (liinsi-e;uporlclltictl, increase of j./,(l;_~ ) in the 
high-nlomentiii~ regime (cf. t’qs. (5.43) and (5.4-l)). \‘i;r c:onclucle tllnt.. at. lvw 
n1ur11f31t.a #kl < QS( T), the du1.1r su11rces sof~r/ru.t~. I:wcausf? of t.lle st.l%mg 11cm- 

linear effects in the ~~1lit~ltUIll evolution. 
iv) The sa.turatrd sources form the outermost la-yrrs of t.hc hadron in the lougitu- 
diiial direction: for giveu kl. they arc’ locxted at .I’- 2 .r,,eFCkl ‘. In particular, 

( 5.52) 

is the longitutlinad estent of tlir s;ituratrcl part of the hadrc-m. in units of rapidity 
(for modes with tranverse rnoimfnturu li_~). In writ.& (5.52), we liavt llsrd the 
DL,4 t&mate (5.46) for the r-clepr~lde~lcr of t,he sa.turation at&. 
v) Note the fact,or l/~x,~ in the r.1l.s. of (5.52); i&s implies that. at saturation, the 
in ttyrofecl cliargr clcnsity 11” ( ./:I ) has t.ypical1-y large a.niplit.urlrs: /5 - ~/qjj& 
l/y. The same is bhereforr t.rue for the CXJV-gau,g;e field (I” (~1) : ii .k l/g. 

Since tlie colour sources at low-h:~ itrf? snt.urated, there sliould be no surprise 
that. the gluoris emitt,ed Iy these sources are saturated as well. uud this indepen- 
dently of their nmtual intrractions (i.e.. of the non-linear effects iii the classic;il 
Yang-Mills equations). Indeed, a quasi-Abelian cal~~ulation of t,hr ,gluon distribu- 
tion, based on the linearized shtkJ1i jr+j(k) M (ikJ/ki jp, yirkh thr fCdk~miIlg 

gluon density (cf. eqs. (,5.-W) ancl eq. (5.51)) : 

which already exhibits saturation ! 111 fact. its argued in Refs. [lo]. the 0111y 
effect of the non-linearit,& in the classical Yilllg-hIillS equations in this low- 
lil regime is t,o muclify the overa. norlna.liznt,ion of the linrar-order result. In 
ant.icipa.tion of this, WC have inserted in vy. (5.53) it wrrec~tiw factor c, which 
cannot be accxuxtely determined in the prrseut :IE’F’rO”ilnat.iorrs (since sensitivr 
to the physics around Q), lmt sliould be snmller tlizul one (although not much 
snmller). 
Note the striking similarity l)et,wrrn eq. (5.53) md t.he ctsrresponding pretlic- 
tioii (2.71) of the classical MV model. Despite of tlir differerlces in the physical 
mcchaiiism leaclirig to saturation - non-linear c1imitmn evolutim fcrr ml. (5.53). 
as opposed t,o non-linear cl;tssical dynamics for eq. (2.71 j -, the final results 
look very n~uc~ll the same. Sit], the earlier discmsion of eq. ( 2.71) cim t:)r ininie- 
tliately adapt,ed to eq. (5.53), after rrplncing =I 4 s : Eq. (5.53) sl1ows lrltrryF/LfLl 
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Figme 19: The g1w.m phase-density .kT(I;l j irl the effec%iw theory plcktrd as it 
fimckion of kl for two vilh.ws of 7- = lil( l/x). 

s&mtion (in the sense of a logarithmic iricrmsr only) with bot.11 s and l/k:, 
with it typical amplitude of order l/cr,q. This is illuutmtr~d in Fig. 19, which 
should be conqmred t,o Fig. 13. (The high-X:1 Iwhwiour in Fig. 1!3 is taken 
from rq. (5.&J.) 

Aside from satumtion, ry. (5.53) has also other import,ant consque~~es, which 
id1 reflect the proportionalit,y to the rnpidky winclowl” T - T( k~ ). rcl. (5.52): 
CL) Scahg. The glum densit,y a.t. satumticm depends upcm the rwrgy 8 and the 
trmsverse rnornent.urli 1;~ only via the scnliiig variable 

7 E Qf(r)/k;. (5.54) 

A similar scaling is observecl in the sohkms to the Iio~chc-bgov equation [ 19. 
56, 581. As mentioned iu the Introduction, sucli a scaling ha* been uctuilll~ 
observed in DIS at HERA [17]. 
h) Ihimrsalif!~. Eq. ( 5.53) is only weakl;t- sensitive - via it3 logarit,hmic de- 
pendence upon the saturation scr~le - to the initial ~~~J~ic~i+h~ls for quantum 
evolution. ar~l therefore to the specific prcqmties of the halron under consid- 
er&ion (e.g., its size and atomic number). Thlq eq. (5.53) not. only provides 
arguments in the favour of haclron uaiversa1it.y at high rnrrgy, but. also I)redic%s 
what should be the pat~tern of its violation. 



The gluon distribution xG(x, Q2j at Q’ < Q$( T is inmeclintply obtained by ) 
integration in eq. (5.53): 

&i” _ 1 1 

ZZ -+& K H”W’ [lIl(Qf(T)/Q2) + l] (5.55) 

.i 

Note tJiat, since khr(k,) cu kt in the saturatiorl regime (cf. rq. (5.51)), the 
above integral is almost insensitive to the soft modes kl :$ Ag~n. This has 
allowed us to extend the integration down to 1;~ = 0 wit.hc.)ut loss of accuracy. 
As anticipated. the pl~euorne~~on of mturatiou reduces the sensitivity of physical 
qumtities to the infrared gauge fields. thus making the weak coupling expansion 
Ireliable. (In Ref. [58] a sinrilar conclusion is drawn CJI~ the basis of liovt:hegov 
equat,ion.) If extrapola.ted up to Q N QS! eq. (5.55) yicltls 

in rough sgreenrent with the corresponding extrapolation from the high IuoIue~l- 

turn regime, eq. (5.45). Eq. ( 5 56) gives also the contributLion c~f the saturated . 
rnodrs to the gluon distribution at- nmmenta Q > C), (r-1. But for very high 
nionienta, fJ >> Qs (7). the cloininant cont~ribut,ion CUI~~S form the hard nlocles 
(Qs < b, 5 Q). and is given ljy eq. (5.41). 
As a, final application, 1Pt us compute the 2-point function S’, (rl) of the Wilson 
lines for large clistances I’_L >> ~/cJ,~(T). Tl ; iis is interesting f(.Jr at. lrast two 
reasons: It shows how the unitsrity limit is reached for t.he scattering of a large 
oolour dipole off the hadron, and it allows us t,o check a postrriori the consistrncy 
of the “ra.ncloni phase ;tpproximat,ion” t.hat. wvty haW used i1.t. low kl. 
To this aim, we rewrite ~(1. (5.25) as 

where we have anticipated t.hat the ma.in contribution ccm~s fro-am the saturated 
Inodes, for which i; = 1/(7r&), cf. rq. (5.34). The integra.1 over p1 is now 
infrared finite (as opposed t,o the hIV nlodel: co~nparc to eq. (2.ci-C) j. and to 
leading log a.ccuracy CBI~ be e\~il.luatrcl a.~: 

The result can be understood as fcjllows: as long as l/rl >b Q.?(y), CJr y < T( rl)? 
e’J’~‘~l x 1, a.nd thr integral wnishes. Bur for y > ?(rJ. or 1lr.l +C Q8(y). t.he 



integrals corresponding to t,lle t,wo terms in the h~il(lk?tS are rut, off at. different 
ultraviolet scales: C),sj,v) for the first term, and l/r,~_ for the seccc.Jnc.1 one. Their 
tlifferencc gives the log in the r.1l.s. By also using ln(Q$(y)I.t) = 4G,q(,p- T(Tl)). 
cf. eq. (5.52)) and performing t,lw integral over y, we finally deduce: 

which coincides with the result ol-,tdned from the Kovchego~ equation [ 1.9, l-l]. 
Ey. (5.59) shows that t.he correlator of the Wilson lines is rapidly decreasing 
when &z(-r)P- > I, so that the RPA is indeed just,ified, at least as a nwirn field 
approximation. 
More cletxils and further opl)lications of the mean field appro~irnat:ioii will i~r 

presented in Ref. [57], wllerr th e results ol,tained in this way will foe also 
wmparecl to the corresponding predictions of the Kovclwgc~v equation. It would 
be &O interesting (espwinlly in view of applications to phenornenc~logy) to take 
into xcow~t the transwrse inhomogeneity of the hadron (i.e.. t,llr dependence 
upon the impact parameter in the transverse ~~lanc). This wn be dontl already 
in the framework of the 1LIFA. but, more geuerwlly, it would lx important t,o 
understand the limitations of the latter. and to Ire able to solve t,lie Yomplete 
R.GE. This might be clone, for instance, via numerical simulations on a lattice. 
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